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Abstract

de Paula, Lauro Cássio Martins. Variable Selection in Multivariate Calibra-

tion considering Non-Decomposability Assumption and Building Blocks Hy-

pothesis. Goiânia, GO - Brazil, 2018. 116p. PhD. Thesis . Instituto de Infor-
mática, Universidade Federal de Goiás.

The procedure used to select a subset of suitable features in a given data set consists in

variable selection, which is important when the dataset contains large number of variables

and many of them are redundant. Multivariate calibration combines variable selection

with statistical techniques to build mathematical models which relate the data to a given

property of interest in order to predict this property by selecting informative variables.

In this context, variable selection techniques have been widely applied to the solution

of several optimization problems. For instance, Genetic Algorithms (GAs) are easy to

implement and consist in a population-based model that uses selection and recombination

operators to generate new solutions. However, usually in multivariate calibration the

dataset present a considerable correlation degree among variables and this provides an

evidence about the problem not being properly decomposed. Moreover, some studies in

literature have claimed genetic operators used by GAs can cause the building blocks (BBs)

disruption of viable solutions. Therefore, this work aims to claim that selecting variables

in multivariate calibration is a non-completely decomposable problem (hypothesis 1)

as well as that recombination operators affects the non-decomposability assumption

(hypothesis 2). Additionally, we are proposing two heuristics, one local search-based

operator and two versions of an Epistasis-based Feature Selection Algorithm (EbFSA) to

improve model prediction performance and avoid BBs disruption. Based on the performed

inquiry and experimental results, we are able to endorse the viability of our hypotheses

and demonstrate EbFSA can overcome some traditional algorithms.

Keywords

Multivariate Calibration, Variable Selection, Genetic Algorithm, Building

Blocks, Decomposability.



Resumo

de Paula, Lauro Cássio Martins. Variable Selection in Multivariate Calibra-

tion considering Non-Decomposability Assumption and Building Blocks Hy-

pothesis. Goiânia, GO - Brazil, 2018. 116p. Tese de Doutorado . Instituto de
Informática, Universidade Federal de Goiás.

Seleção de variáveis é um procedimento para selecionar um subconjunto de características

viáveis em um conjunto de dados, o qual se torna importante quando esse conjunto

contém muitas variáveis redundantes. A calibração multivariada combina seleção de

variáveis com técnicas estatísticas para construir modelos matemáticos com o intuito

de predizer uma propriedade de interesse. Nesse contexto, técnicas de seleção têm

sido aplicadas na solução de diversos problemas. Por exemplo, Algoritmos Genéticos

(AGs) são fáceis de implementar e consistem em um modelo baseado em população,

o qual utiliza operadores de seleção e recombinação para gerar novos indivíduos. No

entanto, geralmente em calibração multivariada, o conjunto de dados apresenta um grau

de correlação considerável entre as variáveis e isso nos fornece uma evidência de que

tal problema não pode ser decomposto adequadamente. Além disso, alguns estudos da

literatura têm afirmado que os operadores genéticos utilizados pelos AGs podem causar

o rompimento dos Blocos Construtores (Building Blocks - BBs) das soluções viáveis.

Portanto, este trabalho objetiva demonstrar que a seleção de variáveis em calibração

multivariada é um problema não-completamente decomponível (hipótese 1), assim como

que operadores de recombinação afetam a presunção de não-decomponibilidade (hipótese

2). Adicionalmente, este trabalho propõe duas heurísticas, um operador de busca local e

duas versões de um Algoritmo para Seleção de Variáveis baseado em Epistasia (EbFSA)

para aprimorar a capacidade de predição do modelo e evitar o rompimento de BBs.

Baseando-se na pesquisa realizada e nos resultados obtidos, torna-se possível confirmar

a viabilidade de nossas hipóteses e demonstrar que o EbFSA consegue superar alguns

algoritmos tradicionais.

Palavras–chave

Calibração Multivariada, Seleção de Variáveis, Algoritmo Genético, Building

Blocks, Decomponibilidade.
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CHAPTER 1
Introduction

Variable selection is the procedure used to choose a subset of suitable features

contained in a given dataset. Selecting variables becomes important when the dataset

contains many redundant and irrelevant features, which do not provide distinguished

knowledge and should be removed without incurring loss of information [39]. For

example, in machine learning and statistics variable selection is commonly used for

constructing a model from which it is possible to be interpreted by users. Machine

learning is an area of study from artificial intelligence. It aims to develop algorithms

and techniques which allow the computer to learn some task. For some applications, the

learning can be defined in specific terms. In this context, the multivariate calibration arises

in machine learning which uses statistical techniques to build mathematical models that

establish learning about data [66].

Multivariate calibration is a sub-area of study from chemometrics 1 related to

analytical chemistry. It determines a mathematical model which relates the data to a given

property of interest from a known sample set in order to predict this property by selecting

informative variables [66]. Given a set of explanatory variables in a matrix Xn×k =

x1
n×1,x

2
n×1, . . . ,x

k
n×1, with n observations and k variables, and given a set of response

variables in a vector yn×1 = (y1,y2, . . . ,yn)
T , the learning task 2 can be synthesized to find

y = f (X). Among the main statistical techniques used to perform the calibration process

and obtain mathematical models are: partial least squares regression (PLSR) [111],

principal component regression (PCR) [38], neural networks (NN) [20], locally weighted

regression (LWR) [21], radial basis function combined with PLS (RBS-PLS) [114],

and multiple linear regression (MLR) [70]. MLR 3 is a statistical technique used to

build models which describe the relationships among several informative variables [23,

72]. It works in the data original domain and is particularly important for some types

1Basically, chemometrics is an analytical chemistry field that applies statistical and mathematical
methods to problems from chemistry. It uses mathematical tools to design or select experimental procedures.

2In the context of multivariate calibration, y is called vector of reference values and X is called matrix of
variables and observations, where each observation is a row and each variable is a column of such matrix.

3It is important to emphasize that in the context of this work, only MLR is to be utilized.
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of applications which require an understanding about the produced learning model.

Although PLSR and PCR have been applied in multivariate calibration, MLR is widely

used and can be a good alternative to turn data into information [23].

In order to turn data into information, it often becomes needed to perform vari-

able selection. The variable selection procedure arises in the construction of mathemat-

ical models to establish the relationship between yn×1 and a subset of variables from

Xn×k when one is not sure about which subset is to be utilized. This issue is particularly

interesting when the number of columns in Xn×k is large and Xn×k contains many redun-

dant variables [25]. Then, variable selection may be considered as a statistical application

problem. Such problem commonly recurs in multivariate calibration. Moreover, variable

selection is an important procedure in chemometrics problems involving regression and

classification tasks. For classification, variable selection allows a better separation among

categories and assists in the construction of a mathematical model able to describe the

different categories with good specificity and sensitivity [25]. In a regression problem,

one can build a mathematical model able to explain a response variable [3]. Thus, the use

of variable selection techniques becomes a viable alternative to settle such issue.

To deal with larger and more complex datasets, the development of efficient

variable selection methods becomes an increasingly important asset. Such methods aim

to search a combination of variables to produce the best result 4 by eliminating variables

which produce noise or that, although giving good information, are strictly correlated

with other already selected variables. In this context, several studies have proposed

algorithms for the variable selection procedure in multivariate calibration. For instance,

Xu et al. [121] presented a genetic algorithm (GA) implementation for variable selection

in visible (VIS) and near-infrared (NIR) spectra. Four different variable selection methods

were used to determine the sugar content of pears. Authors showed that the proposed GA

can be used for industrial applications.

Arakawa et al. [5] proposed a GA-based wavelength selection method for spec-

tral calibration, where the goal consisted on the construction of robust and predictive

regression models by selecting informative wavelength regions. They showed that their

proposal works better than other traditional techniques. Nevertheless, although the pro-

posed algorithm can be used in combination with any regression method, it was used only

partial least squares (PLS) method in such study.

Niazi and Leardi [74] published a review which covers the application of GAs in

chemometrics. The goal was to show the main research fields of GAs applications together

with providing a list of reference on the subject. In their paper, it is possible to see the

applications of GAs in three main different areas: i) optimization; ii) structure-activity

4For example, explaining the property of interest from the instrumental data (e.g., an analyzed sample).



1.1 Work Proposal 21

relationship (QSAR) and molecular modeling; and iii) multivariate calibration.

On the other hand, some studies have claimed genetic operators used by

recombination-based search methods such as GA usually cause the disruption of the build-

ing blocks (BBs) during their executions [41, 47, 62, 88, 91]. BB is a low-order and short

defining-length schema with an above-average fitness representing a set of solutions to a

subproblem [41]. Disrupting BBs often leads the set of solutions from GAs to be trapped

in local optima besides increasing the computational time [47]. For example, some authors

have demonstrated crossover operators used by standard GAs tend to cause the building

blocks disruption, which usually leads to undesirable performance [13, 47, 62, 84].

1.1 Work Proposal

On the one hand, it is known the selection of a non-correlated (independent)

variable subset implies in the improvement of the model predictive ability. On the other

hand, in practice this does not always work well because the number of variables is

usually large and the correlation among them is commonly strong [18, 23, 31]. For

instance, the value of only one independent variable may be considerably worse than

the value obtained from a subset of independent variables due to the variance of the

variables [116]. Furthermore, even if one tries to select only the best variables (e.g., the

most informative), the BBs disruption caused by genetic operators in recombination-based

search algorithms may affect the conjecture of non-decomposability when the problem is

not decomposable [96].

1.1.1 First hypothesis

Decomposable problems can be treated by concatenating basis functions of a

certain order [2]. To a problem to be decomposable, there must be none interaction be-

tween any two variables and each variable should be separately treated [94]. According to

Watson [115], included in the term decomposable is the notion of identifiable component

parts, and a set of correlated variables is not decomposable. Often in multivariate cali-

bration there are considerable linear dependency among decision variables from spectral

data [6, 66]. Then, based on such statements it becomes possible to realize the variable

selection in multivariate calibration usually can not be properly decomposed.

In this sense, our first hypothesis arises and claims that spectral data in mul-

tivariate calibration may be considered as a non-completely decomposable problem. In

a non-completely decomposable problem, some variables are closely correlated to other

variables and therefore should be maintained in the same subset [115]. In this case, vari-

able selection procedure in multivariate calibration may not be accordingly treated as a
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decomposable problem due to the constant presence of multicollinearity in the dataset

(see Section 2.2). Therefore, based on a comprehensive bibliographic review about con-

cepts of decomposability, Section 4.1.2 presents Hypothesis 1 and Equation (4-2) together

with three numerical examples in order to point its viability.

1.1.2 Second hypothesis

In general, schemata are not considered as a critical for variable selection because

their use depends on an a priori knowledge about patterns to be pursued in the schemata

formation [88, 107]. If schemata are properly set, the convergence tends to be faster.

Otherwise, it can limit the search space and result in loss of performance [41]. The BBs

hypothesis appeals to the notion of problem decomposition and the assembly of solutions

from sub-solutions. The method of forming solutions by first breaking down a problem

into subproblems is a central tenet behind the BBs hypothesis [115].

In this context, our second hypothesis arises. It claims that not necessarily

there exists BBs formation in spectral data from multivariate calibration due to the

high data dimensionality. However, the schemata disruption caused by recombination

operators in standard GAs can directly affect the non-decomposability assumption of the

variable selection procedure in multivariate calibration (which is raised up by Hypothesis

1). Therefore, based on a deep research about schema theory, Section 4.2.1 presents

Hypothesis 2 and uses one proposition together with three additional numerical examples

aiming to show its interference in the first hypothesis.

It is important to note the numerical examples for both hypotheses lack some

theorem in order to demonstrate their generalization. Such issue extrapolate the scope of

this work (see Section 7.2). The goal consists in showing their feasibility and applicability

into our two large datasets (see Chapter 5).

1.1.3 Proposed implementations

We are providing significant outcomes using a proposed GA implementation to

show additional evidences about the non-decomposability assumption and schemata dis-

ruption problem in multivariate calibration models. In the proposed GA implementation

(Section 4.3), we are applying two heuristic strategies and one simple local search opera-

tor. Such approaches aim to improve the GA implementation through empiricism 5.

The first heuristic (Section 4.4.1) consists in the initial individuals generation,

which selects the best chromosomes (schemata candidates) as initial solutions. This

5The strategies applied into the both heuristics and the local search operator are performed on an
empirical manner.
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simple strategy is based on the Successive Projections Algorithm (see Section 2.3.2) and

is achieved by using projection operations and selecting (near) orthogonal variables.

The second heuristic aims to identify possible schemata. It is a naive strategy and

tries to find the schema which possibly generates the best individuals in the population.

Considering the best schema as the one capable of generating x% of the best individuals,

where x can be empirically chosen, it becomes possible to calculate the schema fitness

(see Section 3.1).

The local search operator is an approach based on the Variable Neighborhood

Search [94]. It replaces the crossover operator and performs a simple local search by

modifying particular genes in the chromosomes. Genes are bits in our binary represen-

tation, and each bit is equivalent to a variable. The local search explores the variable

neighborhood and reduces (but not eliminate) the schemata disruption.

Additionally, we are proposing two versions of a novel approach for variable

selection. It is called Epistasis-based Feature Selection Algorithm (EbFSA). EbFSA

(Section 4.6) uses two different enhanced strategies. The concept of epistasis (Section

3.5.3) becomes important to measure and analyze the genes interdependence. To this end,

we are using the Pearson’s linear correlation coefficient (Section 2.4.3) as the epistatic

relation among the variables in our both datasets (dataset 1 and dataset 2). Consequently,

EbFSA applies a deterministic approach and avoids the schemata disruption by keeping

correlated variables together in the same subset. Avoiding the schemata disruption is

crucial to prevent the problem decomposition, especially when dealing with high data

dimensionality and interdependent subproblems (which is our case).

Based on our broad inquiry and significant experimental results, we are able to

evidence the viability of both hypotheses. Moreover, our proposed EbFSA is able to select

the most informative variables, providing the best outcomes and overcoming traditional

algorithms in terms of variable selection as well as model predictive ability. Finally, all

results obtained in this work are scientifically published or in peer review process (see

Section 7.1).

1.2 Work Organization

The remainder of this work is organized as follows. Chapter 2 introduces the

mains concepts about variable selection in multivariate calibration. The BB hypothesis as

well as schema theory are discussed in detail in Chapter 3. Our proposal is presented in

Chapter 4. Chapter 5 provides the materials and methods used to obtain the experimental

results. All outcomes are presented and discussed in Chapter 6. Finally, Chapter 7 presents

our conclusions, contributions, limitations and suggestions for future work.



CHAPTER 2
Variable Selection in Chemometrics

Chemometrics is the science of extracting information from chemical systems

by data-driven means [14]. In general, it refers to the application of statistical methods

into problems from chemistry [9]. Chemometrics is commonly applied to solve both

descriptive and predictive problems. In descriptive applications, properties of chemical

systems are modeled with the intent of learning the underlying relationships and structure

of the system. In predictive applications, properties of chemical samples are modeled with

the intent of predicting new properties or behavior of interest [66]. In both cases, datasets

are often large and highly complex involving hundreds or thousands of features. Feature

(or variable) selection is the automatic selection of attributes in datasets which are most

relevant to the predictive modelling problem.

Section 2.1 describes the main concepts regarding multivariate calibration. Sec-

tion 2.2 depicts all details about an inconvenience called multicollinearity. Some tech-

niques for variable selection such as Genetic Algorithm (which is used in this work) are

described in Section 2.3. Finally, Section 2.4 introduces some multicollinearity assess-

ment procedures 1.

2.1 Multivariate Calibration

One of the sub-areas of study from chemometrics related to analytical chemistry

is the multivariate calibration. Multivariate calibration is the procedure used to determine

a mathematical model able to predict some properties of interest from known samples by

an instrument such as a spectrophotometer. It can be represented by Figure 2.1.

Initially, the sample is inserted in the spectrophotometer. Spectral lines (e.g.,

near-infrared spectroscopy) are released onto the sample. Through the absorption or

reflection process of the spectra by the sample molecules, it becomes possible to obtain

1One of them is the Pearson’s linear correlation coefficient, which is chosen to be used in this work.
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Figure 2.1: Representation of multivariate calibration process,

adapted from [33].

data about this relationship. Then, a mathematical model can be obtained to measure the

concentration level of a property of interest from the sample 2.

Such a mathematical model establishes the relationship between the properties

measured by the spectrophotometer and the concentration of an analyzed sample [66]. It

can be used to provide the value of a quantity y based on values measured from a set

of explanatory variables Xn×k = {x1
n×1,x

2
n×1, . . . ,x

k
n×1}, and can be defined by Equation

(2-1):

y = β0 +β1x1 + ...+βkxk + ε, (2-1)

where β0, β1, ..., βk are the regression coefficients to be determined, and ε is a measure of

random error.

In order to obtain the coefficients in Equation (2-1), one may use the multiple

linear regression (MLR). MLR is a statistical technique used to build models which

describe the relationships among several explanatory variables [23, 72]. Equation (2-

2) shows how those regression coefficients can be calculated using the Moore-Penrose

pseudoinverse [60]:

β = (XT
calXcal)

−1XT
caly, (2-2)

where Xcal
3 is the n× k matrix of variables and observations from the calibration set, y

is the vector of reference variables, and β is the vector of regression coefficients.

Soon after calculating those coefficients in Equation (2-2), it becomes necessary

to determine the predictive ability of MLR models 4. This may be achieved by comparing

predictions with reference values for a test set and using statistical measures. The root

mean square error of prediction (RMSEP) is a measure of the differences between values

2For instance, the level of protein in wheat samples could be considered as the property of interest.
3Kennard and Stone [57] algorithm can be applied to divide matrix Xn×k into three sets: calibration

(Xcal), validation (Xval) and prediction (Xpred). See Chapter 5 for more details.
4Usually, reference values (previously yielded in laboratory) can be used to assess the model predictive

ability.
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predicted by a model and the values actually observed [110]. In the context of multivariate

calibration, it is depicted such as shown in Equation (2-3):

RMSEP =

√

∑N
i=1(yi − ŷi)2

n
, (2-3)

where y = {y1,y2, ...,yk}
T is the reference values of the property of interest (which is at-

tempted to be determined in the analyzed sample), n is the number of observations (num-

ber of rows of matrix Xcal), and ŷ = {ŷ1, ŷ2, . . . , ŷk}
T is the estimated value calculated in

matrix notation as

ŷ = Xvalβ, (2-4)

where Xval is the n× k matrix of variables and observations from the validation set.

It is also possible to use other criteria such as the Mean Absolute Percentage

Error (MAPE) and the Predicted Residual Sums of Squares (PRESS) in order to determine

the predictive ability of MLR models. MAPE is one relative measure describing erros as a

percentage of the actual data. It can be used to measure how high or low are the differences

between predictions and actual data in regression models [85]. This measure is defined by

Equation (2-5):

MAPE =
∑n

i=1 |
yi−ŷi

yi
|

n
(100), (2-5)

where yi is the actual data at variable i, ŷi is the forecast (using some model/method) at

variable i, and n is the number of observations (or samples).

PRESS is an useful statistical measure used for comparison between different

models. It also can be used as a predictivity measure to compare and select the best model.

Equation (2-6) shows how to calculate it:

PRESS =
n

∑
i=1

(yi − ŷi)
2, (2-6)

where each yi is the real value of concentration obtained by laboratorial methods, ŷi is

the result of Equation (2-4) applied to measures of new observations (Xcal), and n is the

number of observations.

Based on the error prediction value 5, it becomes possible to determine if the

model has or not an adequate predictive ability. Generally, the goal consists in obtaining

a model with a considerably reduced error value. However, in order to achieve this goal it

5There are several statistical measures available in literature. However, in this work we are using RMSEP
as the main statistical measure. We do not intend to compare model prediction error between different
measures.
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often becomes necessary to deal with the multicollinearity problem. For instance, the light

absorbance by the sample at a given wavelength can be related to the examined compound

concentration. Figure 2.2 shows the absorption process assessing the radiation absorbance

with frequency q in a spectrophotometer. The absorption intensity is given by Equation

(2-7).

 

Figure 2.2: Absorption spectroscopy process, adapted from [75].

A(λ) = log
P0(λ)

P(λ)
, (2-7)

where P0(λ) is the emitted light intensity by the device, and P(λ) is the absorbed light

intensity by the sample at wavelength λ.

When two or more wavelengths cause interference in each other, a mutual

disturbance in waves may occur. The overlap of waves usually causes a high correlation

(linear dependency) among variables 6, which can imply in mathematical problems such

as multicollinearity in the calibration-model achievement process [39]. In addition, a large

number of variables can be obtained for a given sample causing matrix Xn×k to have a

greater number of columns than the number of rows and resulting in an ill-conditioning

of the matrix. An ill-conditioned matrix can cause divergence problems and directly affect

the prediction quality of the property of interest from the sample being analyzed [18].

2.2 Multicollinearity

One of the main issues related to the calibration process is the recurrent pres-

ence of linear correlation among variables. The existence of linear correlation between

two or more variables is a mathematical problem defined as multicollinearity [23]. Mul-

ticollinearity can be caused by the relationship among explanatory variables, and it is

an undesirable attribute of the particular calibration set being collected. Multicollinearity

6In this work, variables are sampled waves, i.e., each wavelength represents a specific variable.
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can reduce the reliability of coefficients from estimated models [3]. Moreover, the relia-

bility reduction of coefficients usually implies in an ill conditioning of matrix Xn×k [23].

A poorly conditioned matrix can present invertibility problems and result in an inverse

matrix which does not match the expected actual values.

2.2.1 Spectral orthogonality

Spectroscopic data can contain multicollinearity for several reasons. In this

sense, two variable vectors are said to be collinear if they both lie on a line passing through

an origin [10]. The concept of orthogonality serves to quantify how close a given vector

is to being dependent upon a set of vectors [31]. For example, consider two vectors a and

b. Thus, their dot product is calculated as

a·b = cosθ||a||2||b||2, (2-8)

where 0 ≤ θ ≤ 180◦ is the angle between a and b, and ||a||2||b||2 is the euclidian norm.

Vectors a and b are orthogonal if θ = 90◦ [10]. The value of an angle provides

quantitative information about the collinearity (dependency) between two vectors [56]. By

definition, a set of vectors {x1
n×1,x

2
n×1, . . . ,x

k
n×1} is defined to be dependent (correlated)

if at least one of the vectors xi, 1 ≤ i ≤ k, can be written as linear combination of

the remaining vectors. Similarly, if those vectors are not correlated, they are linearly

independent.

For instance, let {x1
n×1,x

2
n×1, . . . ,x

k
n×1} be the columns of the n× k matrix Xcal

in Equation (2-2). In addition, let {σ1,σ2, . . . ,σp}, 1 ≤ p ≤ min{n,k}, be the singular

values 7 of Xcal . If p = k, the columns of Xcal are said to be linearly independent, meaning

Xcal is a full rank matrix [56]. The rank of a matrix is the dimension of the vector space

generated by its columns. Thus, the column rank of Xcal is the dimension of its column

space. According to Bourbaki [10], matrix Xcal ∈ Rn×k is a full column rank if and only

if XT
calXcal is invertible.

2.2.2 Sources of multicollinearity

There are five main multicollinearity sources [3, 18, 31, 56]:

• model specification;

• calibration design deficiencies;

• overdefined models;

7In mathematics, the singular values are the square roots of the eigenvalues, which are scalars associated
with the eigenvector [56].
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• outlier-induced multicollinearity;

• multicollinearity inherent in the sample.

Model specification multicollinearity usually results from variable definitions.

It exists regardless of the sample being analyzed [56]. For example, adding polynomial

terms to a model can cause linear dependency [70]. Variable selection techniques can be

used to redefine the model [18]. Such approach is commonly used by biased regression

methods such as principal components and partial least squares (see Section 2.3).

Calibration design multicollinearity is an attribute of the particular calibration set

being collected [23]. It is not inherent in the model or sample. If it has multicollinearity

because calibration samples lie in a proper subspace of the intended predictive domain,

it is said to be deficient [56]. According to Kalivas [56], the best way to treat it is to

augment the dataset. This is because collection of additional calibration samples can

improve spectral orthogonality in matrix Xcal , which usually implies in the reduction

of linear correlation [31]. However, the worst situation for this procedure consists on

removing unnecessary variables, and the deletion of such variables can generate a bias in

calibration matrices and predictions [18, 56].

An overdefined model usually has more variables than samples in the calibration

process, i.e., k > n. It is an undesirable situation because it can produce multicollinear-

ity [3]. In the context of multivariate calibration, it means there are more regression co-

efficients than samples which can be used to estimate them. This can occur with spectro-

scopic data because current spectrophotometers can supply absorbance measurements for

a sample at hundreds or thousands of wavelengths in a few seconds [87]. Multicollinearity

can be smoothed if more calibration samples are used for matrix Xcal during calibration

process. However, adding more calibration samples will not always provide a feasible

solution, and more variables may need to be selected [6, 48].

Outliers can cause artificial multicollinearity. It can derive from calibration

design deficiencies [56]. Multicollinearity can be induced if an outlier implies large values

on two or more variables. The removal of outliers reduces multicollinearity. Nevertheless,

it is necessary to identify a real outlier before removing it from dataset [48]. Otherwise,

removing false outliers may imply in the loss of significant information.

Sample-inherent multicollinearity comes from sample characteristics and usually

can not be avoided by using any sampling procedure or experimental design [56]. Even if

the calibration samples are well designed, they may not necessarily yield an orthogonal

set. One of the first steps in a proper treatment of the multicollinearity problem consists

on its detection or diagnosis [23]. An alternative to minimize this type of near dependency

consists on performing wavelength (or variable) selection. Variable selection can reduce

the degree of multicollinearity [39]. For instance, many multivariate calibration models

present poor performance when multicollinearity exists among variables [85, 101, 121,
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124]. Thus, it becomes necessary to deal with multicollinearity by using some technique

able to select the most informative and non-redundant variables. The removal of non-

informative variables produces better predictions and simpler models. According to

Xiaobo [119], a well-performed variable selection can result in models having a greater

predictive ability.

2.2.3 Dealing with multicollinearity

In literature, it is possible to find many techniques to deal with multicollinear-

ity [3, 18, 23, 31, 119]. According to Kalivas [56], sometimes the best thing to treat

multicollinearity is doing nothing. Indeed, this is far away from being the best solution

for handling multicollinear data. Notwithstanding, if an analysis sample has much multi-

collinear data as the calibration sample, it is expected the concentration prediction of the

property of interest should be reasonably accurate [3]. Such approach is clearly limited in

its predictive ability, and it demands to be carefully decided.

As mentioned before, augmenting the data may smooth the multicollinear-

ity. However, augmenting multicollinear datasets is not a practical choice since multi-

collinearity usually stems from the sample [56]. Moreover, additional data may only yield

the same dependency, besides collecting new data is not always feasible [31]. A possible

alternative to minimize multicollinearity consists on the respecification of the model by

combining variables. Respecifying the model by variable combination may reduce the

degree of dependence among them [56]. For instance, consider {x1
n×1,x

2
n×1,x

3
n×1} as the

first three columns of matrix Xcal from Equation (2-2). If {x1
n×1,x

2
n×1,x

3
n×1} are linearly

dependent (correlated), then a new variable x∗n×1 = x1
n×1+x2

n×1+x3
n×1 could be used as a

function to retain the information in the three variables in order to reduce the dependency.

In this case, since these three variables are linearly dependent, they should be removed

from the model because they tend to increase multicollinearity. Consequently, they have

minimum predictive value. Instead, rather than eliminating them, the combination of such

variables into one variable may yield a more predictive one [48].

If a decision has been made to perform variable selection, it becomes necessary

to decide on which variables to utilize. In this sense, several variable selection algorithms

are available in literature (see Section 2.3). To decide on which selection approach

is the best depends on the selection criterion and the dataset complexity [56]. For

example, in multivariate calibration, variable selection attempts to identify and remove

correlated variables which reduce the model performance. Variable selection procedures

are important when dealing with spectroscopic data [102]. In spectroscopic data, the

number of variables is often large and needs to be reduced [37, 85, 101]. When MLR

is being used, variable selection is an important step for building the calibration model.
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Usually, methods such as Partial Least Squares Regression (PLSR) [111] is used in

combination with MLR to reduce the dimensionality problem. Nevertheless, PLSR latent

variables can be affected by the presence of irrelevant variables [116]. Thus, the use

of enhanced techniques can improve the prediction performance. Finally, understanding

the chemical process under investigation can be facilitated by paying attention to the

relevant spectroscopic variables [56, 119]. As a consequence, improvements in prediction

performance can be expected when variable selection is being applied.

Another significant issue related to multivariate calibration consists in the fact

that, in predicting problems with regression models containing many variables, most of

them often may not contribute for the predictive ability of the model [124]. Thus, selecting

a reduced set of informative variables becomes important to improve the efficiency of

techniques used to construct MLR models. However, some independent variables are

more significant than others [66]. Better outcomes are usually improved by eliminating

uninformative variables. Furthermore, lower-cost predictions can be achieved by reducing

the number of independent variables. Hence, smaller RMSEP values can be achieved.

In this sense and as mentioned before, the use of variable selection methods

has become important approaches to deal with multicollinearity [6, 18, 85, 101]. The

goal of variable selection consists in improving the prediction performance of predictors

as well as providing a better understanding of the underlying process which generated

the data. To address this issue, several techniques for variable selection have been

proposed [5, 6, 85, 101, 121].

An approach consists on the use of filter and wrapper methods [48]. Filter method

selects subsets of variables as a pre-processing step independently of the chosen predictor.

Wrapper method uses the learning machine of interest as a black box to score variable

subsets according to their predictive ability. Finally, a more recent approach consists in

the use of adapted metaheuristics for variable selection. Some works in the literature

have demonstrated their effectiveness and superiority over traditional variable selection

methods [64, 77, 82, 85, 103, 101]. Section 2.3 provides a more detailed discussion about

this issue.

2.3 Some Techniques for Variable Selection

There are many types of variable selection techniques. The choice of variable

selection approach commonly depends on the problem. On the one hand, if data analysis

needs to be performed in high dimensional space, selecting filter approach seems to

be a better alternative to avoid high computational costs [48]. Examples of some filter

methods include the Chi-squared test [90], information gain [58], correlation coefficient

scores [71], and novel feature selection approaches [24, 109, 112].
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On the other hand, if accuracy is more desirable, wrappers should be used [59].

One of the advantages of wrapper methods is the estimated accuracy of the learning

algorithm is the best available heuristic for measuring the variable values [24]. Examples

of wrapper methods are the recursive-feature elimination algorithm [48], partial least

squares [111], successive projections algorithm [6], among others [20].

2.3.1 Partial least squares

Partial least squares [111], also know as PLS, is a technique which generalizes

and combines variables from principal component analysis and MLR. PLS can yield a

more (statistically) reduced and robust solution than MLR [49, 95]. When a relatively

large number of correlated variables are present in the model, PLS is useful for reducing

noisy predictor variables [111]. It provides a set of informative scores about the correla-

tion structures of the variables and structural similarities among compounds, which means

that it bears some relation to principal components regression [95].

Instead of finding hyperplanes of minimum variance in correlated and indepen-

dent variables, it is able to find a linear regression model by projecting the predicted and

observable variables to a new space [111]. In general, PLS creates and uses score vectors.

Such vectors are called latent variables and are defined to be maximized by the covari-

ance among different sets of variables. However, one of its main problems lies in the

fact that it guides the variables transformation by covariance in which the relationship

of variance and covariance does not necessarily lead to better learning for some appli-

cations [32, 116, 124]. Furthermore, in case of considerable large number of correlated

variables, PLS can cause overfitting obtaining a well-fitted model with a reduced predic-

tive ability [6].

Commonly, PLS is considered as a biased regression method [32, 56]. Although

consisting in a strategy which attempts to reduce multicollinearity by removing uninfor-

mative variables, it usually skews the final results and tends to introduce a bias in the

model by eliminating some of the original information [56]. Then, a strict test for the sig-

nificance of each PLS component becomes necessary [95]. According to Kalivas [56], it

is hoped that when using a biased regression method, estimations will be closer to actual

values than estimations based on unbiased regression. Nevertheless, in practice this does

not always occur. In literature, one can find works that have used other approaches with

PLS [5, 32, 124].

2.3.2 Successive projections algorithm

Successive projections algorithm (SPA) is an iterative procedure used for vari-

able selection [6]. It is a forward selection method that uses mathematical operations in
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a vector space to minimize multicollinearity. In the context of multivariate calibration,

SPA is used for variable selection in MLR models (SPA-MLR) [34, 87, 105]. In its gen-

eral form, SPA-MLR is composed of three phases. In the first phase, the instrumental

responses of the calibration samples are disposed in matrix X from Equation (2-2). Each

column of X is considered as a different variable (column vector). Such column vectors

are subjected to a sequence of projection operations. Each projection operation results in

the creation of chains of variables, and each element of a chain is included so as to obtain

the largest orthogonal projection [79].

In phase 2, the candidate subsets of variables extracted from the chain created

in phase 1 are evaluated. The best subset of variables is selected based on the smallest

prediction error value by using some statistical measure (e.g., RMSEP from Equation

(2-3)). Finally, the last phase involves a backward elimination procedure which discards

those (uninformative) variables that do not present significant information [105]. To this

end, a relevance index is defined for each variable included in the subset selected in the

previous phase. Such index is calculated by multiplying the standard deviation of the

variable by the absolute value of its regression coefficient [6]. Then, variables are sorted

according to the index, and a chart plotting a comparison between RMSEP and the number

of variables can be generated.

Several works have used SPA for selecting features from optimization problems.

For instance, Araujo [6] proposed the SPA for variable selection in spectroscopic compo-

nent analysis. The results demonstrated that in comparison with PLS, SPA was able to pro-

vide better outcomes and a higher computational performance. By using SPA, Breitkre-

itz [12] presented a strategy for sulfur determination in diesel samples. Author showed

that in comparison with a genetic algorithm, SPA yielded better MLR models with a

more adequate prediction ability.

Due to the need of constructing a MLR model for each candidate subset of

variables, phase 2 of SPA can be considered as the computational bottleneck of the al-

gorithm [79]. Moreover, the matrix inverse calculation in Equation (2-2) can demand a

significant computational effort. Consequently, the computational performance can be re-

duced. Thus, some works have presented strategies to minimize the computational time

of phase 2 [79, 87, 104]. In this sense, Paula et al. [79] proposed a new strategy imple-

mented in SPA to avoid matrix inverse calculation in order to increase the computational

performance. Results presented 37× better performance compared to a traditional SPA

implementation.

On the other hand, other studies have claimed SPA is not able to overcome

adapted metaheuristics for variable selection [64, 77, 82, 85, 86, 101]. Such works have

demonstrated the use of metaheuristics such as Genetic Algorithm (see Section 2.3.3)

can provide better outcomes regarding the prediction error reduction in multivariate
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calibration models as well as reducing the number of selected variables.

2.3.3 Genetic algorithm

Despite deterministic approaches have been widely used for variable selection,

some studies have demonstrated the superiority of metaheuristics over such methods [64,

85, 101]. Possible advantages over deterministic methods are: in many cases, the search

space is considerably large; and most metaheuristic strategies provide a search space

exploration in parallel with multiple solutions. Hence, the computational performance

tends to increase when a metaheuristic is being used [122].

Genetic algorithm (GA) is an evolutionary metaheuristic based on recombination

process in which each individual represents a specific solution. It consists in an optimiza-

tion approach based on Darwin’s classical rules about natural evolution. Such approach

uses random steps in order to converge to a nonrandom optimal solution [2, 41]. GA may

be considered as a population-based model by using selection and recombination opera-

tors to generate new sample points in a search space. Some algorithms also use mutation

operators, which allow the candidate solutions to not be tied in local optima [42].

An implementation of a GA begins with a population of random candidate

solutions. Such solutions are also called chromosomes. Each chromosome is evaluated

based on a fitness function, and those which represent a better solution to the target

problem are given more chances to reproduce than those one which are poorer solutions.

Figure 2.3 shows an example of two chromosomes randomly chosen to participate in the

recombination process using an one-point crossover operator. In such figure, both subject

1 and subject 2 were generated by a binary representation in which “1” may indicate that

a variable is selected, and “0” otherwise. Algorithm 2.1 shows one simple pseudocode for

GA.

Figure 2.3: Example of two chromosomes in a recombination pro-

cess using a single-point crossover.

Recombination process results in the next generation of chromosomes which are

(usually) different from the previous generation. Generally, the average fitness is increased

by this procedure since only the best chromosomes from the first generation are selected

for breeding along with a small proportion of less fit solutions. These less fit solutions

ensure genetic diversity within the genetic pool of the parents, and therefore ensure the

genetic diversity of the subsequent offspring [41].
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Algorithm 2.1: Simple genetic algorithm.
1: Let n be the population size
2: Initialize the population of individuals using uniformly distributed random numbers
3: for i = 1 : MaxGenerations

4: Evaluate all individuals based on the fitness
5: Generate n solutions using some crossover operator
6: if offspring fitness is better than parents fitness
7: Replace parents by children
8: else

9: Ignore children
10: end if

11: end for i

Some works in literature have used GA for variable selection to solve different

types of optimization problems. For instance, Arakawa et al. [5] proposed a GA-based

wavelength selection method for spectral calibration. The goal consisted in the construc-

tion of robust and predictive regression models by selecting informative variables. It

was shown that their proposal works better than other traditional techniques. Niazi and

Leardi [74] published a review which covers the application of GAs in chemometrics. The

objective was showing the main research fields of GAs applications, together with pro-

viding a list of reference on the subject. In their paper, it is possible to see the applications

of GAs in different areas. More recently, Soares et al. [101] proposed a mutation-based

compact genetic algorithm (mCGA) for spectroscopy variable selection. Authors demon-

strated that mCGA is able to minimize the prediction error and requires a reduced number

of evaluations than a standard GA.

In general, GAs are easy to implement. GAs have the ability to produce even

more fitter partial solutions by combining building blocks (BBs) [41]. However, their

behavior is difficult to understand due to its stochasticity, and recombination operators

used by standard GA implementations tend to cause BBs disruption over generations [47,

84] (see Chapter 3). As a consequence, significant information may be lost through

crossing operations among individuals of the population. Furthermore, it is difficult to

understand why these algorithms frequently succeed at generating solutions of high fitness

when applied to practical problems [108]. In this context, it is important to highlight

that this work uses the GA as a tool to investigate and analyze such inconveniences in

multivariate calibration (see Chapter 4).

2.4 Multicollinearity Assessment

It is known that multicollinearity causes serious issues in the calibration process

as well as in the model predictive ability. Hence, it becomes useful to use a diagnostic
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method to detect and assess the presence of multicollinearity in the dataset [56]. Further-

more, the use of variable selection techniques helps to discern on which variables are

linearly dependent (i.e., involved in multicollinearity), and select those who provide bet-

ter information for the property of interest to be accurately and precisely estimated from

the analyzed sample (see Section 2.3).

Euclidian distance among spectra is usually applied as a match indicator to de-

termine spectral similarity [113]. In this sense, the distance measurement between two

variables (spectral vectors) may be a good choice to assess the collinearity among spec-

tra. However, assessments based on distance measurements are not always worthwhile

methods [113]. As described in Section 2.2.1, spectral orthogonality can be assessed in

order to appraise multicollinearity. Dot product is an example of tool which can be used

to assess orthogonality between two vectors. Unfortunately, only the use of dot product to

assess orthogonality may be a naive procedure for being considered limited in its useful-

ness [56, 113].

Distance measurements and dot products may not be practical choices for as-

sessing spectral orthogonality. Kalivas [56] claims that there are some assessment proce-

dures which represent the most useful evaluators of multicollinearity. Some procedures

are functions of singular values from a singular value decomposition of the matrix under

consideration (matrix Xcal in case of multivariate calibration). Using this type of method-

ology, it becomes possible to assess the degree of multicollinearity in the dataset. Three

examples of measures commonly utilized are: i) condition number; ii) absolute determi-

nant; and iii) Pearson’s linear correlation coefficient.

2.4.1 Condition number

Condition number of a matrix can be a valuable asset to evaluate multicollinear-

ity. It has the ability to correlate data with error in concentration predictions. Equation

(2-9) shows how the condition number of matrix Xcal can be computed:

κ2(Xcal) =
σ1

σk

, (2-9)

where σ1 and σk are, respectively, the first and the last singular values of matrix Xcal .

It is possible to notice if κ2(Xcal) is large relative to σ1, then σk is small. The term

σk represents the distance from Xcal to all n× k matrices with dependent columns [56].

Then, if κ2(Xcal) is large relative to σ1, Xcal is close to a n×k matrix whose columns are

dependent. Instead, the smaller the κ2(Xcal) value, the greater the independence between

any two columns of Xcal .

However, Kalivas [56] experimentally demonstrated the potential inability of

condition numbers to assess spectral orthogonality. In many cases, it is the size of
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the singular value σk that represents a more critical assessment. Moreover, singular

values lack the ability to estimate the extent of spectral orthogonality for a specific

component (column) in Xcal and can not point exactly which columns are involved in

multicollinearity [56].

2.4.2 Absolute determinant

Determinant of a matrix is a function associating a scalar with each square

matrix. This function lets us know if the matrix has or not an inverse matrix. If its

determinant is equal to zero, then such matrix is singular [10]. For example, one can

prove there is a single function f with the following properties: i) f is linear and alterning

in the rows of the matrix; and ii) f (In) = 1, where In is the identity matrix. Such

function f is called determinant and the determinant of matrix Xcal can be represented

by det(Xcal) [10].

On the other hand, the absolute determinant is defined to be the singular values

product of the matrix under consideration. For instance, consider Xcal as a full rank n× k

matrix (n ≥ k) with singular values {σ1,σ2, . . . ,σk}. If one or more dependent variables

are present in the matrix, one or more of the singular values tend to be small (close to

zero) [10, 56]. The absolute determinant is defined for a n×k matrix with full rank k such

as

Det(Xcal) =
k

∏
i=1

σi. (2-10)

The determinant and absolute determinant of a matrix are distinct concepts. The

determinant of a matrix is defined if and only if the matrix is square [10]. The absolute

determinant is defined for n× k matrices with full rank k [56]. Through Equation (2-10),

it is possible to see that an absolute determinant is always positive since all σi > 0, 1

≤ i ≤ k. Instead, the determinant of a matrix can be zero, positive or negative. If matrix

Xcal is non-singular (i.e., has an inverse matrix), then the absolute determinant and the

determinant of Xcal can be calculated by Equation (2-11):

Det(Xcal) = det(Xcal). (2-11)

From the absolute determinant, it follows that a near zero absolute determinant

value reflects near dependency among columns of Xcal [56]. Similar to condition number,

although having the potential for assessing dependent variables, the absolute determinant

also can not determine exactly which columns are involved in multicollinearity [3].

Consequently, it should be considered as a global assessment tool instead of a fine analysis

tool [56].
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2.4.3 Pearson’s linear correlation coefficient

Another relevant measure used to assess multicollinearity is the Pearson’s linear

correlation coefficient (see Example 3 in Section 4.1.3). The Pearson’s linear correlation

coefficient is a statistical measure for the linear correlation between two variables [97].

It can yield a symmetric matrix Rk×k from the n× k matrix Xcal with values -1 ≤ ρ ≤

1, where ρ = -1 represents a total negative linear correlation, ρ = 0 indicates no linear

correlation between two variables, and ρ = 1 is a total positive linear correlation. The ρ

value of two variables x1 and x2 (ρx1,x2) is their covariance divided by the product of their

standard deviations [63]:

ρx1,x2 =
E[(x1 −µx1)(x2 −µx2)]

ωx1ωx2

, (2-12)

where µ is the mean, ω is the standard deviation, and E is the expectation.

In addition to being simple and relatively easy to calculate, the Pearson’s linear

correlation coefficient is not a naive measure such as condition number. Moreover, it does

not demand considerable computational effort [63]. Therefore, it is important to highlight

that in this work we use this measure to assess and analyze the linear dependence among

variables (columns) in matrix Xcal (see Sections 4.6 and 6.3 for more details).

2.5 Summary

This chapter discussed the main concepts about the variable selection procedure

in multivariate calibration. Multivariate calibration is a field of study in chemometrics

used to assess properties of interest from samples by mathematical models. It is possi-

ble due to the use of instrumental devices (e.g., spectrophotometer), which emits infrared

spectra over the analyzed sample. Through these absorbed or reflected spectra by the

molecules in the analyzed sample, a mathematical model can be established by using sta-

tistical techniques such as multiple linear regression. However, current spectrophotome-

ters are able to generate thousands of variables and many of them do not present signif-

icant information about the property of interest. This issue is mainly caused by a math-

ematical problem called multicollinearity. It can arise from five main different sources:

inherent in the sample, model specification, calibration design deficiencies, overdefined

models, and outlier-induced multicollinearity.

Multicollinearity causes linear correlation among variables. This issue reduces

the reliability of estimated models. Consequently, it must be treated in order to improve

the model predictive ability. Spectral orthogonality measurement between two variables

may be a viable tool for quantifying how close a given variable is to being dependent

upon a set of variables. Condition number, absolute determinant and the Pearson’s linear
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correlation coefficient can be valuable assets to assess and evaluate the collinearity

between two or more variables.

The use of variable selection techniques has been a more suitable choice to deal

with multicollinearity. Genetic Algorithm is an example of metaheuristic approach which

has been widely used to select variables in optimization problems. In this context, Chapter

2 aimed to introduce the basic concepts about variable selection in multivariate calibration

in order to help the reader understand our proposal (which is described in Chapter 4).



CHAPTER 3
Building Blocks Hypothesis

The term building block (BB) has been used without a formal definition, but it

was initially cited by Holland [53] and Goldberg [47]. BB is defined as a short and low-

order schema 1 with an above average fitness. More specifically, a BB can be described

as a subset of solutions to a subproblem expressed as a schema. Such schema has high

fitness and its size is smaller than the length of the binary solution. BBs can be helpful

for estimating the performance of recombination-based search methods such as genetic

algorithms [94]. The building blocks hypothesis can be formulated by using the definition

of schemata as being highly-fit solutions to subproblems. According to Goldberg [41],

short, low-order and highly-fit schemata should be sampled and recombined to form

solutions of potentially higher fitness.

In order to grasp the BB problem, next sections detail the main concepts regard-

ing such issue. Section 3.1 provides the theory behind the concept of schema. Section

3.2 introduces the schema theorem proposed by Goldberg [41]. An introduction about the

generalization of the schema theorem is presented in Section 3.3. Section 3.4 presents

a discussion about the disruption of building blocks, establishing relation with problem

difficulty, deceptive functions, disruption caused by crossover operators, and the possible

formation of variables blocks in spectral data. Finally, Section 3.5 argues about some al-

ternatives such as competent genetic algorithms, linkage learning and epistasis, which are

possible solutions for avoiding BBs disruption.

3.1 Schema Theory

A schema H = (h1,h2, ...,hl) is a string of length l and may be considered as a

template representing a subset of solutions. If a solution is a string built using symbols

from an alphabet, one can say schemata are strings made by such alphabet plus the

character ∗ (don’t care). The ∗ character represents any given character from the existing

1Schema is a genetic pattern describing a set of chromosomes in the search space with certain fixed
positions [53].
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alphabet. For example, H = 1****** can be considered as a schema for the subject 1 from

Figure 2.3 (see Section 2.3.3). In this case, schema H is able to yield any string in which

the first position is fixed to 1 and the other positions do not care.

In schema theory, there are two important characteristics which must be taken

into consideration: i) the order O(H) of a schema H is defined as the number of fixed

positions in the string; and ii) the defining length δ(H) of a schema H is the distance

between the two outermost fixed positions [41]. For instance, consider H1 and H2 as the

following schemata in a binary alphabet. In this case, H1 has O(H1) = 3 and δ(H1) = 4.

Schema H2 has O(H2) = 2 and δ(H2) = 3. Strings 11011 and 01100 can be considered as

instances of schemata H1 and H2, respectively.

H1 = 1*0*1,

H2 = *1**0.

The fitness of a schema H consists in the average fitness of all instances matching

the schema [42]. It can be calculated as

f (H) =
1
|H|∑ f (s),∀ s ∈ H, (3-1)

where |H| is the number of individuals s which are instances of schema H, and f is the

fitness function.

The number of individuals that can be generated by a schema H is calculated as

m(H) = 2l−O(H), (3-2)

where l is the string length [41].

The framework of schema theory allows the definition of a building block and a

formal statement of the building block hypothesis [69, 107]. In schema theory, the search

space is partitioned into subspaces of varying generality levels, and mathematical models

are constructed to estimate how the number of individuals in the population belonging to

certain schema can be expected to grow in the next generation. From these models, the

BB hypothesis arises [69]. BB hypothesis attempts to explain how a GA solves a problem

by positing that near-optimal solutions are forged from small, low-order and fitter-average

schemata [69, 107, 118]. Based on the notion of BB hypothesis, Holland [53] developed

the schema theorem which permits the design of GAs and the choice of their parameters.

Such theorem describes how the number of instances of a schema H changes over the

number of generations.
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3.2 Schema Theorem

Schema theorem is commonly used to explain how GAs work. Typically, schema

theorem states the expected proportion of individuals in a given schema at the current

generation [91]. Under a particular genetic operation mechanism (proportionate selection)

and a particular genetic operator (crossover operator), the schema theorem can be written

as follows [53]

m(H, t +1)≥ m(H, t)
f (H, t)

f ′(t)

[

1− pc
δ(H)

l −1

]

, (3-3)

where

• m(H, t) is the expected number of individuals representing schema H at generation

t;

• f (H, t) is the fitness of schema H at generation t;

• f ′(t) is the average fitness of the population at generation t;

• pc is the crossover probability (an algorithm parameter);

• δ(H) is the defining length of schema H;

• l is the string length.

Overall, schema theorem describes how the number of copies of a schema

H depends on proportionate selection and crossover operator when using a standard

GA [93]. It consists in the product of the selection (m(H, t) f (H,t)
f ′(t) ) and crossover ([1−

pc
δ(H)
l−1 ]) terms [41]. However, the usefulness of the schema theorem has been widely

criticised [4, 19, 35, 91]. It provides only lower bounds for the expected value of the

number of instances of a schema in the next generation [4]. This makes it difficult to

predict the future behavior of a GA even for a single generation ahead [91].

Altenberg [4] points out schema theorem is not able to address the search

component of GAs on which performance depends on. Moreover, it can not distinguish

GAs that are performing well from those that are not [47]. In addition, Chung [19] states

an important type of above-average schemata which are not BBs always exists among

the schemata receiving increasing evaluations during the GA search, and the role of these

schemata can not be explained by schema theorem.

In general, schema theorem represents two conflicting objectives: selection

and crossover [41]. If the fitness of a schema H is above the average fitness of the

population ( f (H, t) > f
′
(t)), selection tends to favor such schema. It happens because

selection preserves highly-fit schemata to the next generations [54]. However, the defining

length (δ(H)) of a schema H should be small when using crossover [93]. Otherwise,

crossover operator may frequently disrupt high-order or large-δ(H) schemata, which is a

concern [47, 94, 108]. On the other hand, if the sub-solutions (schemata) to a problem are



3.3 Generalization of the Schema Theorem 43

short (low δ(H)) and low-order (low O(H)), the number of desirable schemata tends to

increase over generations [93]. Consequently, the problem may be easily solved by GA

when schemata have high-average fitness and relatively-low crossover disruption.

Due to the schema theorem be restricted to a proportionate selection and a

crossover operator, it may limit its own value [41]. Radcliffe [92] claims it is not

possible to always explain the observed behavior of GAs. Schema theorem neglects the

stochastic and dynamic nature of the genetic search [93]. Thus, Goldberg [41] introduced

a generalization for this theorem. Basically, author substituted appropriate terms in order

to ease the demonstration of the applicability through other selection mechanisms and

genetic operators.

3.3 Generalization of the Schema Theorem

Goldberg [41] recognized that other selection methods may allocate the schemata

on a different manner from proportionate selection. Then, a generalized selection pressure

φ(H, t) is taken as a function of the reproduction ratio of schema H at generation t, and

a disruption factor ε(H, t) of schema H at generation t is put in place of pc
δ(H)
l−1 as shown

below:

m(H, t +1)≥ m(H, t)
f (H, t)

f
′
(t)

φ(H, t) [1− ε(H, t)] . (3-4)

The rightmost term [1− pc
δ(H)
l−1 ] in Equation (3-3) is a bound on the survival

probability of a schema H under the applied genetic operators [47]. In the generalization

form, this issue is mitgated by the use of φ(H, t) and ε(H, t). However, the main concern

still consists in making sure desirable schemata grow [41, 93]. This requires the growth

factor γ is greater than one (γ > 1) [47, 68], where

γ = φ(H, t) [1− ε(H, t)] . (3-5)

In this sense, there are two possibilities:

• raizing the selection pressure φ(H, t); or

• decreasing the disruption factor ε(H, t).

On the one hand, if φ(H, t) is high, an uniform population will be quickly

obtained [93]. Thus, it will lead to the loss of diversity [68]. On the other hand, a

reduced ε(H, t) will decrease the probability of crossover, and this will lower the number

of schemata exchange [94]. Therefore, in order to grow desirable schemata, one must

combine viable schemata from one solution with viable schemata from another solution
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using crossover, where the goal consists in minimizing the schemata disruption and

maximizing the schemata exchange [107].

Old and recent works have questioned the appropriateness of the schema theorem

and its generalization [13, 29, 30, 41, 47, 62, 65, 68, 93, 108]. One problem about the

schema theorem is: due to fitness-proportional selection, schemata are not uniformly

sampled by the population members [65]. A second problem about the schema theorem

consists in the theoretical considerations derived from the evolution strategies do not

confirm Holland’s view on how genetic algorithms process building blocks [47]. Finally,

a third problem is: the schema theorem formula can be interpreted in a way which seems

to contradict the notion of the building blocks hypothesis [68, 93].

3.4 The Building Blocks Problem

BBs are helpful for estimating the performance of recombination-based search

algorithms [94]. Routhlauf [94] claims that if the sub-solutions to a problem are short (low

δ(H)) and low order (low O(H)), the problem is assumed to be easy for recombination-

based search. On the other hand, there are two main issues preventing the schema

theorem to provide an exact analysis [117]. First, it is usually calculated an upper

bound on the probability of disruption due to crossover. The term δ(H)
l−1 assumes a

schema is disrupted every time crossover operator falls within its defining length [41].

Second, the schema theorem ignores all sources of schemata from crosses of strings

containing different competing schemata [13]. Furthermore, ensuring the growth factor

γ > 1 becomes necessary to increasing the selection pressure or decreasing the disruption

factor, which it is not always possible to achieve both accordingly.

There are other issues implying in the performance reduction of a recombination-

based search algorithm. For example:

• Deceptive functions are commonly considered as difficult problems to be solved by

GAs (see Section 3.4.1).

• High-quality but high-order schemata tend to be disrupted by crossover operators.

As a consequence, they can not be inherit by next generations (see Section 3.4.2).

• In the context of spectral data in multivariate calibration, spectral regions represent-

ing the property of interest in the analyzed sample may be set in blocks and such

blocks are usually broken due to schemata disruption caused by recombination op-

erators [84] (see Section 3.4.3).
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3.4.1 BB-based problem difficulty and deceptive functions

Previous work have shown some problems become more difficult to solve

when using GA specific representations [68, 93, 94]. To be able to investigate how the

representation influence the GA performance, it is necessary to apply a measurement of

problem difficulty [41]. Focusing on recombination-based search GAs, it is possible to

determine the reasons of problem difficulty consist in the building blocks [93].

Deceptive problems were one of the first approaches to the question of what

makes problems difficult for GAs [47]. Indeed, GAs usually have difficulties in solving

deceptive (or trap) problems [13, 62]. This occurs because individuals may be attracted to

the trap solution since the fitness of all the solutions are nearest to the local optima instead

of the global optimum 2. Figure 3.1 shows the representation of an example of a 5-bit trap

function. Considering the value 5 in the figure as the global optimum, the value 4 would

be the deceptive attractor.
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Figure 3.1: Representation of a 5-bit trap function, adapted

from [41].

Deception is only one among several features of a problem affecting GA’s

performance [94]. Based on the schema theorem and the BB hypothesis, Goldberg [41]

presented an approach to understand problem difficulty. This approach consists in the

matter of schemata disruption, and it is decomposed into three parts 3:

• intra-BB difficulty;

• inter-BB difficulty; and

• extra-BB difficulty.

2To reliably solve deceptive problems, GAs must increase the number of copies of the best
schemata [93].

3Such problem-difficult decomposition assumes difficult problems are building block challenging [93].
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The first one (intra-BB difficulty) means difficulty within a BB. A number of

schemata of order O(H) = k having the same fixed positions consists in 2k different

competing schemata. The different schemata compete against each other based on their

fitness [41]. Identifying the high-quality schemata and properly propagating them is the

main difficulty of intra-BB difficulty, and it can be measured with the deceptiveness of a

problem [44].

The inter-BB difficulty means difficulty between two BBs. If a problem can

be decomposed into smaller subproblems, GAs can solve these smaller subproblems in

parallel and try to identify the desirable schemata [94]. However, the contributions of

different schemata to the fitness function are not uniform, and interdependencies among

different schemata usually occur [41]. Therefore, one of the major problems related to

inter-BB difficulty is the loss of desirable schemata during a GA run. It happens due to the

fact that different schemata can have different contributions to the fitness of an individual.

Moreover, if a problem can not be decomposed into independent subproblems, there still

can be interdependencies among different schemata, which is an additional issue of inter-

BB difficulty [93].

Finally, extra-BB difficulty means difficulty outside of BBs. Noise may be

considered as a source of extra-BB difficulty, and it has an important influence on

the GA performance due to selection is based on the fitness of the individuals. Non-

deterministic noise is often undesirable by modifying the fitness values of the individuals.

Thus, selection decisions may be no longer based on the quality of the solutions. Instead,

they may become based on stochastic variance 4[94].

3.4.2 Disruption due to crossover

Although the schema theorem and its generalization form are not self-sufficient

to provide an accurate analysis of a GA, the principle of meaningful BBs is directly

motivated by them [45]. Recall that if schemata are highly-fit, short and low-order, they

tend to exponentially increase in numbers or market share over the generations [41].

However, if the high-quality schemata are long or high-order, they are often disrupted

by crossover operators [93]. Hence, such schemata can not be properly propagated by

recombination-based search methods.

For instance, consider two strings S1 and S2 both generated by schema H =

01*01:

S1 = 01101,

4Stochastic variance is a model in which the variance of a stochastic process is itself randomly
distributed [123].
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S2 = 01001.

In this case, it is possible to observe that every possible cross of a crossover

operator produces a copy of S1 and S2 as offspring. Thus, a recombination operator which

always cross over a single differing bit returns a copy of the original strings between the

two strings produced by the cross [47]. In this sense, high-order schemata are usually

minimally disruptive. Nevertheless, it is not a useful operator because of the loss of

diversity [29, 47, 108].

On the other hand, strings with two or more different bits (low-order schemata)

usually cause the schema disruption for at least one cross site [47]. For instance, consider

two random strings S3 and S4 generated by schema H1 = 1***0 and schema H2 = 0***1,

respectively:

S3 = 11100,

S4 = 00011.

As claimed by Mitchell et al. [69], GAs work well when highly-fit and low-order

schemata recombine to form even more highly-fit and low-order schemata. In this case,

however, both schemata (H1 and H2) will be disrupted regardless where the cross site

falls among the bits. Then, although smoothing the loss of diversity in the search space,

such issue can move the solution away from the global optimum and get it stuck in local

optima.

Schemata analysis is an important approach used for measuring the difficulty and

disruption of subproblems with respect to GAs [46, 62]. As the main search operator of

GAs is recombination, they are a representative example of recombination-based search

techniques [93]. Schemata are commonly defined for binary search spaces and schemata

analysis is useful for problems with binary representation and decision variables [94].

However, as far as we know, literature lacks studies describing how schemata concepts

can be used for estimating problem difficulty as well as schemata disruption in the context

of variable selection for spectral data.

3.4.3 Possible variables blocks in spectral data

Spectrophotometry is a procedure of emission and absorption of (e.g., infrared)

wavelength measurement by a device (e.g., spectrophotometer). Using a spectrophotome-

ter, it is able to determine the wavelengths or frequency of bands in a spectrum. The most

widely used spectrometric methods make use of eletromagnetic radiation, which is a type

of energy taking different forms. The visible spectrum (VIS) is one of the most easily

recognized forms. Spectrophotometry has been used in applications such as the identity

confirmation of a compound and the quantification of a protein [6, 85, 104]. The near
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infrared (NIR) spectrophotometry offers a relatively-quick chemical analysis method ca-

pable of providing results of multiple properties in known samples.

Spectrophotometric relation between the absorbed energy by a chemical compo-

nent and the variation of the wavelength stemmed by a spectrophotometer can be repre-

sented by the Lambert-Beer law [100]. As it is already known, the samples can contain dif-

ferent molecules with different sizes and complexities. When the spectrophotometer emits

a particular wavelength onto the sample, a set of molecules resonates with the emitted fre-

quency and absorbs (or reflects) such energy. Thus, by emitting multiple wavelengths it

is possible to detect different types of absorptions (or reflections). As a consequence, it

becomes possible to evaluate different sample properties.

The set of such emissions can generate a spectrum of the sample with respect to

the emitted frequencies. In many cases, it is possible to check the absorbance variations

from different properties (e.g., protein) contained in the analyzed sample (e.g., wheat

grain). Nevertheless, it is not possible to obtain the concentration of a specific property

of interest only with such spectra. In this scenario, multivariate calibration techniques

are widely used to build mathematical models able to relate the spectra with the real

concentration of the property of interest from the analyzed sample (see Chapter 2).

As described in Chapter 2, usually in multivariate calibration problems some

independent variables are more significant than others [23]. Accuracy is improved by

eliminating dependent variables, and lower-cost predictions can be achieved by reducing

the number of independent variables. Hence, smaller prediction errors (e.g., RMSEP)

and a multivariate dataset can be more parsimoniously obtained [66]. Thus, it is known

that the best variables are chosen according to their best performance in RMSEP (or

other error measure), which is relevant given the fact that calibration model relates the

spectrophotometric samples to reference samples. However, it is not possible to claim

these variables represent the behavior of the actual concentration contained in the original

sample. Such questioning may be relevant due to the possible information not included in

the calibration model.

Even with techniques to reduce collinearity among variables (reducing instru-

mental noise, baseline errors, among others), it is still possible the model has information

not referring to the original sample information. An example would be the existence of

different molecules responding to the same stimuli (wavelengths) [100]. Then, if a vari-

able contained in this spectral region is chosen, it could improve the calibration model

(e.g., reducing the prediction error), but with low concentration representation in the sam-

ple.

In this sense, we believe spectral regions reliably representing the properties of

interest in the samples may be possibly set in blocks [84]. These blocks of variables can

be interpreted as the ideal setting to represent the concentration of the property of interest
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in samples. Therefore, blocks with the best variables (e.g., those with best fitness) should

be preserved during the model building process. Notwithstanding, schemata disruption

caused by crossover operators becomes a critical issue to be taken into consideration [41,

47].

Finally, as far as we know, literature also lacks studies demonstrating the possible

variables block formation and BBs setting in spectral data from multivariate calibration

problems. It is important to note such issue is far away from the scope of this work (see

Section 7.3). The main goal consists in presenting two hypotheses 5 (see Sections 4.1.2

and 4.2.1) and one novel approach as an alternative for variable selection in multivariate

calibration (see Section 4.6).

3.5 Some Alternatives

As claimed by last section, genetic operators from standard GAs can cause

schemata disruption. Currently, there are some approaches trying to deal with this issue.

One alternative is known as competent genetic algorithms [50, 52, 98] (or Distribution

Estimation Algorithms), which make use of modern strategies trying to avoid the disrup-

tion of BBs. Other approaches consist in the use of linkage learning and epistasis, which

are genetic processes used to group and analyze dependent genes subset.

3.5.1 Compact genetic algorithm

Harik et al. [52] proposed the Compact Genetic Algorithm (CGA). CGA is an

evolutionary strategy that mimics the order-one behavior of the standard GA. Whereas

the standard GA adopts an initial set of solutions (population) and uses the recombination

and mutation operators, CGA uses a probability vector p = [p1 p2 ... pl]
T in order

to reproduce the offspring of the next generation.

The probability vector p has length l and its initial elements are equal to 0.5: p =

[0.5 0.5 ... 0.5]T . Algorithm 3.1 shows a pseudocode for CGA.

At each generation, two individuals (a and b) are randomly generated from p, and

a single tournament is performed between them in a fitness function. Then, the individual

with the best performance is utilized to update p. As the algorithm evolves, p converges

to an explicit solution

5Hypothesis 2 (Section 4.2.1) points out that the formation of BBs becomes unlikely in the presence of
high data dimensionality.
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Algorithm 3.1: Compact Genetic Algorithm, adapted from [52].
1: Let n be the population size, and l be the chromosome length
2: Initialize probability vector
3: Generate two individuals from the vector
4: Let them compete
5: Update the probability vector towards the better one
6: Check if the vector has converged
7: Vector p represents the final solution

p(i) =











p(i)+1/l, i f a(i) = 1 and a(i) 6= b(i),

p(i)−1/l, i f a(i) = 0 and a(i) 6= b(i),

p(i), i f a(i) = b(i),

(3-6)

where 0 ≤ i ≤ l.

Using such strategy, CGA requires less memory and performs faster and more

efficient than standard GA when applied to easy problems [120]. However, when it is

applied to difficult problems with high order schemata, CGA may not provide acceptable

solutions and may be computationally infeasible for problems involving a relatively large

number of variables [22]. It occurs because whereas GA evaluates the individual in the

larger context, CGA do it bit to bit. Thus, CGA completely decorrelates the population’s

genes, which are usually interdependent [1, 36, 52].

Moreover, the update of probability vector proposed by Harik et al. [52] (1/l)

is quite simple because only the length (l) of the vector is considered. Empirically, it

is possible to observe that a larger update step can make the probability vector converge

quickly to mostly not acceptable results. On the other hand, a smaller update step increases

the probability of p(i) to become zero, since the optimum is 1 (or vice versa) [28].

3.5.2 Linkage learning

Linkage learning (LL) is a genetic process grouping together dependent genes 6

subsets in GAs. It is based on genetic learning, which is a measure of distance between the

loci of two or more specific dependent genes (or dependent/independent variables) [73].

According to Newman [73], many GA implementations that learn linkage is defined to

operate by using a two phases method. Initially, they determine the subsets of dependent

variables. Then, they use some strategy to improve the genetic linkage among such vari-

ables. Regarding LL, GAs have advantages over other search methods such as calculus-

6A gene is also referred as allele in some works from literature.
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based methods, which provide them greater robustness and turn them capable of handling

parameters made up of decision variable sets [51].

One of the ways chromosomes can populate the next generation is through

crossover. It is known that when crossover is being performed, the groups of variables

(BB) directly affecting the fitness of the chromosomes are usually split up. Considering

crossover operator, the probability of splitting up a BB is proportionate to the defining

length of such BB (see Section 3.4). On the other hand, if one of the parents was generated

by an optimal (or near optimal) BB, the application of LL may become advantageous

because it can reduce the probability of the BB being disrupted [17]. The generation

of chromosomes with good linkage is advantageous because it helps to maintain viable

subsets of variables [50]. In this case, independent variables could be placed adjacent to

each other in order to turn the search more robust.

LL has been used to solve several problems (specially problems that standard

GAs struggle to solve) due to the fact it can reduce the probability of BBs being broken

up. However, LL in GAs (LLGA [51]) does not perform well on uniformly scaled

problems [16]. The functional (or linear) dependency among variables is generally not

known and hard to find, which means the aligning of independent variables adjacently

must occur during the search for the optimal solution [73].

In addition, LLGA requires an exponentially-growing population size in terms

of the number of BBs to solve an uniformly scaled problem [50]. Finally, there are some

open questions which cast doubt on the use of LL. For example, why the LLGA behavior

seems inconsistent when solving multiple BBs of different scalings? What conditions are

required for a LLGA to learn linkage? And how independent variables can be aligned

adjacently? These questions are not widely answered [73]. As far as we know, a few

works have presented LLGA approaches to solve different types of problems [16, 51, 73],

but none of them is specifically applied for variable selection in multivariate calibration.

3.5.3 Epistasis

Epistasis is a biological term that states the amount of intrachromosome gene

interaction. In other words, it is a measure of interdependence between genes and an

indicator of problem difficulty in GAs. According to Davidor [26], gene interaction is a

central issue in natural genetics. Genes are usually dependent on each other and they can

suppress as well as activate the expression of other genes.

When epistasis of a certain chromosome is high, many genes are strongly

linked to other genes. It means that there is a strong correlation among genes in the

chromosome 7. In GA, epistasis is commonly used to indicate interdependency among

7In the context of this work, the high level of correlation among the variables in the dataset implies in a
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the elements composing the representation. Representation is the primary aspect of a GA

application and determines its performance [26].

Tracing epistasis is a hard task because the presence of epistatic elements (genes)

can be traced only at the phenotypic level (representation) but not at the genotypic level

(interaction) [15]. Even if the amount of epistasis is known, finding the epistatic genes

and the level of interaction among them is considerably difficult. This issue can directly

imply in the computational performance of the algorithm especially when dealing with

high dimensionality problems. Furthermore, the more epistatic a given problem is the

harder it may be for a GA to find its optimum solution [36].

Some researchers have proposed theoretical and empirical studies for epistasis

measure. For instance, Davidor [26] is a pioneer in this area and presented an epistatic

variance for estimating the epistasis degree in binary-coded representation GAs. Chan

et al. [15] demonstrated how to use the approach of variance analysis to estimate

the epistasis in real-coded representation GAs. Fonlupt et al. [36] proposed a bit-wise

epistasis to measure the effect on the level of gene interaction for binary search spaces

and improve the performance of evolutionary algorithms.

It is possible to check in such studies that strong epistatic relation of a represen-

tation is due to some of the bits. However, those proposed measures are able to estimate

only the epistasis in the whole representation rather than estimating in each bit of the

representation. Finally, as in the case of linkage learning and as far as we know, there is

still no work in literature using epistasis measure in binary-coded representation GAs for

selecting variables in multivariate calibration problems.

3.6 Summary

This chapter provided a detailed discussion about the building blocks (BBs)

hypothesis. BB is a short and low-order schema with above average fitness. Schema is

a template representing a set of solutions to a specific subproblem. Schema theory allows

the definition of a BB and a statement of the BB hypothesis. Schema theorem aims to

explain the Genetic Algorithm (GA) behavior. Basically, it describes how the number of

copies of a specific schema depends on the selection and recombination processes when a

standard GA is being utilized. Although schema theorem and its generalization have been

cited by several works, both are restricted to some issues preventing them to provide an

accurate analysis.

GAs have been widely used for variable selection in many optimization

problems. However, some studies have emphasized that crossover operators used by

high level of epistatic relation (see Figures 6.1 and 6.5).



3.6 Summary 53

recombination-based search methods tend to cause the disruption of BBs. For example, in

the context of multivariate calibration, we believe spectral regions representing the prop-

erty of interest in the analyzed sample may be set in blocks and such blocks are often

broken due to schemata disruption. Moreover, deceptive functions are considered as dif-

ficult problems to be solved by GAs, and if a problem is not (properly) decomposable,

standard GA may not be able to find viable solutions.

The use of competent GAs and linkage learning can provide possible solutions

for avoiding schemata disruption. However, there are still some issues (open questions)

preventing linkage learning to be generalized and applied to some optimization problems

solution. Despite the use of competent GAs to avoid the inconvenience of BBs disruption,

such algorithms are computationally infeasible for problems involving large number of

variables (high data dimensionality).

Finally, epistasis is an important concept used to measure the genes interdepen-

dence in the chromosome. Being aware about the gene interaction is a feasible manner

to choose the best individuals of a GA to achieve the best outcomes. However, it is dif-

ficult to determine the epistatic genes and this may lead to performance decreasing in

problems with high data dimensionality. In this context, Chapter 3 aimed to introduce all

fundamental concepts in order to prepare the reader for the next one, which presents our

proposal.



CHAPTER 4
Proposal

Indeed, multicollinearity is a concern (see Chapter 2). When two variables are

correlated, one variable may carry information from the other one. Therefore, the presence

of one without the other in the same subset of variables results in loss of relevant

information [56]. In other words, when a dependent variable is selected, the absence

of the variable to which it linearly depends may imply in the reduction of the model

predictive ability [6, 39]. Consequently, multicollinearity also directly implies in the

problem decomposition 1.

This chapter presents our two hypotheses. The first one (Section 4.1.2) deals with

decomposability. It assumes the variable selection procedure in multivariate calibration

can not be properly decomposed due to multicollinearity. One equation (based on works

from literature) together with three numerical examples aim to claim its veracity.

The second hypothesis (Section 4.2.1) approaches the schemata disruption prob-

lem in Genetic Algorithms (GAs). It claims the schemata disruption caused by crossover

operator directly affects the non-decomposability assumption from the first hypothesis.

One proposition (also based on previous works) and three additional numerical examples

aim to testify its viability.

This chapter also presents some algorithms implementations (Sections 4.3, 4.4,

4.5 and 4.6). One GA together with two heuristics and one local search operator are

proposed. Additionally, we are presenting two versions of a feature selection algorithm

based on epistasis concepts in order to avoid schemata disruption by preventing the

problem decomposition.

4.1 Decomposability

Decomposability describes how the problem can be decomposed into smaller in-

dependent subproblems [53]. If there are subsets of variables which can be independently

set of each other, the decomposability of a problem is considered high. Nevertheless, if

1If multicollinearity is high, the problem decomposition tends to be low [56, 89, 94].
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a problem can not be decomposed into subproblems with few interdependencies among

subsets of variables, the decomposability is low [94]. For instance, consider a random

optimization problem with two variants. The first one assumes no decomposition of the

problem. In this case, one decision variable can be defined as S = {s1,s2,s3,s4,s5,s6}.

Consequently, there are six different solutions and the optimization method to be used

must evaluate all possible solutions to find the optimal one.

The second variant assumes the problem can be decomposed. Then, two decision

variables can be randomly chosen as S1 = {s1,s2,s3} and S2 = {s4,s5,s6}. As shown in

Table 4.1, a possible decomposition for such problem is f = f1(S1) + f2(S2). It is possible

to see that the resulting objective values f of different solutions are the same for both

formulations. However, the second variant provides a lower size of the resultant search

space. Therefore, the problem becomes easier for recombination-based search algorithms

as the additive problem decomposition fits well the problem properties [94].

Table 4.1: Two different formulations of a same problem, adapted

from [94].

Without problem decomposition Additive problem decompostion

f = f (S1, S2) f = f1(S1) + f2(S2)
f (s1, s4) = 1, f (s1, s5) = 2, f (s1, s6) = 3 f1(s1) = 0, f2(s4) = 1
f (s2, s4) = 2, f (s2, s5) = 3, f (s2, s6) = 4 f1(s2) = 1, f2(s5) = 2
f (s3, s4) = 3, f (s3, s5) = 4, f (s3, s6) = 5 f1(s3) = 2, f2(s6) = 3

4.1.1 Additive problem decomposition

According to Ahn [2], decomposable problems can be solved by concatenating

basis functions of a certain order. Additively decomposable functions are one of the

representations of a decomposable problem 2. It follows that the overall fitness could be

equal to the sum of all basis functions [68]. To demonstrate a problem is decomposable,

Rothlauf [94] states that one can calculate the fitness of each variable separately and then

calculate the f itnessFull (overall fitness function) with all inputs together. If f itnessFull is

not equal to the sum of the variable fitnesses, it means such problem can not be properly

decomposed [89].

In this sense, given the matrix Xn×k from Equation (2-2) in Chapter 2, it could

be decomposed if the objective value of each variable is individually calculated and its

overall fitness function is obtained such as:

2When the problem is not decomposable, the sum of the fitness function of each subproblem will not
equal the fitness of the whole problem.
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f (Xn×k) =
k

∑
i=1

f (xi
n×1). (4-1)

where Xn×k = {x1
n×1, x2

n×1, ..., xk
n×1}, and the fitness function f could be assumed as the

RMSEP (see Equation (2-3)).

Assuming the variable selection procedure in multivariate calibration as a de-

composable problem and the use of a GA to select the variables, an additively decompos-

able function applied in this context could be formally defined as

f (Xn×k) =
N

∑
i=1

fvi
1×k

(Xi
n×m),∀ vi

1×k ∈ VN×k, (4-2)

where Xn×k is the matrix from Equation (2-2); Xi
n×m, 1 ≤ m ≤ k, are N different subsets 3

of variables (columns) from Xn×k; vi
1×k is an individual from the population VN×k of the

GA; and N is the number of individuals in VN×k. More specifically, every vi
1×k is an 1 ×

k binary vector in which each element equals to 1 means the respective variable is to be

selected. Otherwise, an element equals to 0 does not select any variable.

Then, the variable subsets could be divided into several smaller subsets and

recombined by genetic operators to form new better individuals. However, it is known a

subset of informative variables may provide better outcomes than these variables divided

into several subsets [6, 56]. Thus, such subset should not be split into different parts.

Additionally, when a problem can not be broken into smaller subproblems or

its pieces affect one another (i.e., interdependent subproblems), the problem can not

be properly decomposed [2, 89, 94]. In this case, interdependent subproblems may

contain information from other subproblems. Consequently, a partition between them may

interfere in the final result [41, 94].

4.1.2 Hypothesis 1

The variable selection procedure in the context of multivariate calibration is not

necessarily decomposable because such problem usually present high correlation degree

among variables (see Section 2.2) [6, 84, 85, 101, 105]. As a consequence, the objective

value (e.g., RMSEP) of only one variable may be considerably worse than the RMSEP

obtained from a subset of variables [39]. In this context, our first hypothesis arises:

• Hypothesis 1: Variable selection in multivariate calibration should be considered as

a non-completely decomposable problem due to the considerable data correlation

(multicollinearity) usually present in the dataset [83].

3It is important to note m is determined by the number of variables each individual selects. In other
words, m is equal to the number of 1s of each separate individual in the GA population.
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In order to claim the suitability of our first hypothesis, we are providing three nu-

merical examples based on concepts of decomposability. The goal is to show the proposed

Equation (4-2) can not be satisfied in the context of variable selection in multivariate cal-

ibration considering the standard GA with binary representation as variable selector. It

is important to highlight that such hypothesis and examples are already published in the

Proceedings of the Genetic and Evolutionary Computation Conference 2017 [83].

4.1.3 Numerical examples for hypothesis 1

Example 1. Let Xn×4 = {x1,x2,x3,x4} be a subset with four random variables,

where each xi, 1 ≤ i ≤ 4, is an n×1 vector:

Xn×4 =























−0.0023 0.0013 −0.0022 −0.0013

−0.0025 0.0014 −0.0023 −0.0014

. . . .

. . . .

. . . .

−0.0020 0.0010 −0.0020 −0.0012























.

Moreover, let V4×4 = {v1,v2,v3,v4} be a population of a GA with four random

individuals, where each vi, 1 ≤ i ≤ 4, is an 1×4 vector:

V4×4 =













1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1













,

where v1 is the first row and selects the first column in Xn×4, ..., and v4 is the last row

selecting the last column in Xn×4.

Calculating the prediction error (RMSEP) as fitness function for each separate

variable, it is possible to obtain different individual values. Table 4.2 shows the RMSEP

value for each variable in Xn×4. Adding together all RMSEP values in Table 4.2, we

obtain fv1(x1) + fv2(x2) + fv3(x3) + fv4(x4) = 27.3339.

Table 4.2: RMSEP values for each variable in Xn×4.

Variable subset RMSEP

v1 → x1 10.7114
v2 → x2 3.9159
v3 → x3 6.1204
v4 → x4 6.5862

Example 2. Consider now V8×4 = {v1,v2,v3,v4,v5,v6,v7,v8} as a population

with eight random individuals:
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V8×4 =

































1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 0 1 1

0 1 1 1

1 1 1 1

































,

where each individual selects different combinations of variables. For instance, v1 selects

{x1,x2}, ..., and v8 selects {x1,x2,x3,x4}.

Again, calculating the fitness function for each individual it is possible to obtain

different values. Table 4.3 shows the separately-obtained RMSEP values by different

combinations of variables in Xn×4. Note the RMSEP value for the four variables together

in the same subset is fv8(x1, x2, x3, x4) = 3.4937.

Table 4.3: RMSEP values for different combinations of variables

in matrix Xn×4.

Variable subset RMSEP

v1 → {x1,x2} 3.9415
v2 → {x1,x3} 6.1242
v3 → {x1,x4} 6.5756
v4 → {x2,x3} 3.8765
v5 → {x2,x4} 3.9110
v6 → {x3,x4} 5.8188

v7 → {x2,x3,x4} 3.4252
v8 → {x1,x2,x3,x4} 3.4937

Example 3. Calculating the Pearson’s linear correlation coefficient (see Section

2.4.3) for matrix Xn×4, one can obtain a symmetric matrix R4×4
4 such as:

R4×4 =













1 −0.3976 0.2498 0.2118

−0.3976 1 −0.0099 −0.0218

0.2198 −0.0099 1 0.9843

0.2118 −0.0218 0.9843 1













.

Matrix R4×4 points out that variables can influence each other due to the presence

of multicollinearity among them. In matrix R4×4, variables x2 and x3 provide ρx2,x3 = -

0.0099 (close to zero), which means they are near linearly independent. Nevertheless,

4Matrix R is related to the covariance of matrix X. In matrix R, all main diagonal elements are equal to
1, which means every variable is directly correlated to itself.
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variables x3 and x4 have ρx3,x4 = 0.9843 (close to 1) and both are (almost totally)

correlated. Hence, x3 and x4 are correlated to each other such that one variable may carry

information from the other (e.g., epistatic relation - see Section 3.5.3).

We can notice the RMSEP values sum of each separate variable in Table 4.2

( fv1(x1) + fv2(x2) + fv3(x3) + fv4(x4) = 27.3339) is considerably greater than the obtained

RMSEP value with the four variables together in Table 4.3 ( fv8(x1, x2, x3, x4) = 3.4937).

Then, it is possible to claim fv8(x1, x2, x3, x4) 6= fv1(x1) + fv2(x2) + fv3(x3) + fv4(x4),

which means the presence of interdependent subset of variables indeed does not allow a

proper decomposition of the problem [93].

Additionally, the subset composed of variables {x2,x3,x4} in Table 4.3 provides

the lowest RMSEP ( fv7(x2, x3, x4) = 3.4252). This implies that as variables x3 and x4 are

correlated, they should be together in the same subset. In addition, since variable x2 is the

one which has the lowest correlation degree with both variables x3 ( fv4(x2, x3) = 3.8765)

and x4 ( fv5(x2, x4) = 3.9110), these three variables are able to reduce the prediction error

since they remain together in the same subset.

Those three numerical examples indicate Equation (4-2) can not be satisfied

for the variable selection procedure in multivariate calibration. Therefore, they provide

significant evidences that selecting variables in multivariate calibration should indeed

be considered as a non-completely decomposable problem, which supports our first

hypothesis [83].

Finally, Section 4.1.4 briefly discuss the polynomial decomposition. It is an

approach developed in the literature to estimate how well a problem can be solved by

using recombination-based search methods. Such approach assumes search performance

is higher if the problem can be decomposed into smaller subproblems [93].

4.1.4 Polynomial problem decomposition

Rothlauf [94] states that the linearity of an optimization problem can be mea-

sured by its polynomial decomposition. For binary decision variables, any objective func-

tion f defined on l decision variables xi ∈ {0, 1} can be decomposed according to Equa-

tion (4-3):

f (x) = ∑
i⊂{1,...,l}

αi ∏
j∈i

eT
j x, (4-3)

where the vector e j contains 1 in the jth column and 0 elsewhere, T denotes transpose,

and the αi are the coefficients describing the non-linearity of the problem.

Regarding x = (x1, ..., xl), the function f may be viewed as a polynomial in

the variables x1, ..., xl . If the decomposed problem has only order 1 coefficients, the

problem is linear decomposable. However, if there are high order coefficients, then the
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problem function is non-linear. The highest polynomial coefficient is able to determine

the maximum non-linearity of the function f . Therefore, the higher the order of the αi,

the more non-linear the problem is [94].

According to Mason [67], there is some correlation between the non-linearity of

a problem and its difficulty for recombination-based search methods. Nevertheless, there

could be high order αi although the problem can be easily solved by recombination-based

search algorithms. For example, the function

f (x) =























1 for x1 = x2 = 0

2 for x1 = 0,x2 = 1

4 for x1 = 1,x2 = 0

10 for x1 = x2 = 1,

(4-4)

can be decomposed into f (x) = α1 + α2x1 + α3(x
2
2) + α4x1(x

2
2) = 1 + 3x1 + (x2

2) + 5x1(x
2
2).

It is possible to see the problem is decomposable. Thus, it is easy for a GA as

each of the two decision variables can be solved independently of each other. On the

other hand, as the problem is non-linear and high order coefficients exist, the polynomial

decomposition wrongly classifies the problem as difficult. This misclassification is due

to the fact the polynomial decomposition assumes a linear decomposition and can not

appropriately describe non-linear dependencies [67, 94]. In this case, the use of different

approaches such as Walsh decomposition may be more viable [40]. Note that it is

beyond the scope of this work to investigate and compare differences between problem

decomposition techniques.

Considering decision variables in the context of multivariate calibration and

Equation (4-3), an objective function f defined on k variables xn×1 ∈ Xn×k could be

decomposed into 5:

f (Xn×k) =
k

∑
i=1

βi ∏
j=i

eT
j Xn×k, (4-5)

where the vector e j contains 1 in the jth column and 0 elsewhere. The βi are the

coefficients describing the (possible) non-linearity of the problem.

For instance, let Xn×2 = {x1,x2} be a subset with two random columns from

matrix Xcal (see Section 2.1), where each xi, 1 ≤ i ≤ 2, is an n×1 vector:

5Equation (4-5) was adapted from Rothlauf [94].
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Xn×2 =























−0.0022 −0.0013

−0.0023 −0.0014

. .

. .

. .

−0.0020 −0.0012























.

Calculating the regression coefficients through Equation (2-2), it is possible to

obtain

β =

[

−2.0860×104

2.3254×104

]

.

In this case (and usually in multivariate calibration), we do not have binary

decision variables. Instead, x1 and x2 are two different linear-continuously decision

variables and there are only order 1 coefficients with one possible outcome: f (Xn×2) = β0

+ β1x1 + β2x2 = 1 + (-2.0860×104)x1 + (2.3254×104)x2. Therefore, this is an evidence

that the problem might be linear decomposable if both variables are linearly independent

(uncorrelated). However, variables x1 and x2 provide a Pearson’s linear correlation ρx1,x2

= 0.9843 6, which indicates a high correlation degree between them and indeed the

problem can not be properly decomposed.

As far as we know, related works in literature have not considered such decom-

position issues accordingly. Many works have used different versions of GAs to select

variables in multivariate calibration problems [6, 12, 37, 64, 79, 105, 124]. However, al-

though obtaining viable outcomes, those algorithms have an inherently stochastic charac-

teristic. Consequently, such characteristic is usually due to the use of genetic operators 7.

In this sense, Section 4.2.1 presents our second hypothesis. It approaches the schemata

disruption problem caused by recombination operators in the context of multivariate cal-

ibration.

4.2 Schemata Disruption

Recombination-based search methods such as GAs aim to solve problems by

trying different decompositions of the problem [94]. They try solving the resultant

subproblems and putting together the obtained solutions to get a final solution to the

overall problem. Solving a certain number of smaller subproblems is usually easier than

6Such value was calculated through Equation (2-12). See Example 3 in Section 4.1.3.
7One possible explanation is that recombination-based search methods exploit the search space by

getting better and better individuals through crossover and mutation. While crossover aims to generate
an offspring superior to the parents, mutation tries to escape from local optimum regions.
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solving the original problem, and this leads to high performance of recombination-based

search algorithms [93]. Thus, it is important to have no interactions among variables

from different subsets so that the algorithm becomes able to select the most informative

variables.

Although recombination-based search methods are operationally simple, they

may be considered as complex algorithms [68]. To understand and design them on an

efficient manner, one can treat them as a divide-and-conquer approach by decompos-

ing the problem into smaller decomposable subproblems, solving those subproblems

independently and integrating them as a whole solution. Therefore, in order to use a

recombination-based optimization method accordingly, one should define the decision

variables of a problem such that they allow a decomposition of the problem [93].

As mentioned before, to a problem to be decomposable there must be none inter-

action between any two variables and each variable should be separately treated [115]. A

problem can be properly decomposed by identifying the interdependencies among differ-

ent genes 8 in the chromosome of an individual from the population of a GA. In this sense,

the purpose of genetic operators should consist in decomposing the problem by detecting

which bits in the string influence each other (e.g., epistasis). Nonetheless, detecting such

interdependencies among the bits in the string may become a considerable complicating

factor, especially when dealing with long string length and high order schemata [41].

Recombination operators are techniques used in GAs to decompose an optimiza-

tion problem into smaller subproblems in order to generate new solutions at each genera-

tion. Each individual in a population can be considered as a possible solution. One of the

most known recombination operators is the one-point crossover. One-point crossover is a

simple operator which splits the subjects into two parts and aims to regroup different parts

to form new individuals (offspring). The goal usually consists in obtaining an offspring

better than parents. For example, if the objective value (fitness function) of the offspring

is better than the parents fitness, then the offspring should be preserved in the population.

However, splitting an individual commonly implies in an inconvenience called building

blocks (or schemata) disruption [47].

A building block (BB) is a schema with low order, short defining-length and an

above-average fitness (see Section 3.1). It is able to generate the best individuals and its

characteristics must be inherited by new offsprings over generations. Notwithstanding,

the use of recombination operators to split parents chromosome and form an offspring

can directly cause the disruption of BBs [41, 47]. Thus, a disrupted BB is not preserved

in new individuals and the GA’s performance tends to decrease in next iterations [62].

8Genes may be considered as bits in a binary-coded string, and each bit may be treated as a variable
position.
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On the one hand, if the problem can be decomposed into smaller subproblems

and the intra-BB and inter-BB difficulty (see Section 3.4.1) are low, such problem

may be considered as an easy one for recombination-based search methods [41]. The

decomposition is based on the assumption that such methods can decompose problems

and work with BBs accordingly [93]. Goldberg et al. [43] claim the decomposition of a

problem consists in the following conditions:

• It is important to know the algorithm process, which means considering the BBs

processing;

• Solving tractable problems by BBs;

• Supplying enough BBs in the initial population;

• Ensuring the growth of viable BBs;

• Mixing BBs properly;

• Deciding between two competing BBs.

On the other hand, considering all these six points, it becomes clear how great is

the complexity of a recombination-based search algorithm to ensure a good solution (e.g.,

global optimum) through a viable search space exploration.

GAs have been successfully used to select variables in several optimization

problems [5, 64, 85, 101, 121]. Even when decomposability of the problem is low, GAs

make use of recombination operators to split it into subproblems and integrate them

as a whole solution. However, examples from Section 4.1.2 show us that breaking the

problem into independent subsets of variables is different from dividing these subsets into

interdependent smaller parts [83, 84].

4.2.1 Hypothesis 2

When dealing with a problem which can not be properly decomposed, the use of

recombination-based search methods may not be helpful as no suitable decomposition

of the problem is possible [94]. In this case, efforts of such methods to find proper

decompositions may become useless [93]. Therefore, considering the schemata disruption

problem our second hypothesis arises:

• Hypothesis 2: Schemata disruption caused by recombination operators in GAs di-

rectly affects the non-decomposability assumption of the variable selection proce-

dure in multivariate calibration [84].

To demonstrate the feasibility of our second hypothesis, we are providing three

numerical examples based on concepts of schema theory. The goal is to show that not

necessarily there exists building blocks formation in spectral data from multivariate
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calibration due to the high data dimensionality. Even so, the crossover operator tends

to cause schemata disruption, and this issue can affect the previous hypothesis (Section

4.1.2). It is important to highlight that an earlier version of the second hypothesis is

already published in the Proceedings of the Genetic and Evolutionary Computation

Conference 2016 [84].

4.2.2 Numerical examples for hypothesis 2

As thoroughly discussed in Section 3.4, BBs are low-order and short defining-

length schemata with an above-average fitness. Thus, consider the following proposition

based on Chung’s statement [19]:

Proposition 1 (For a schema to be considered as a building block). If these three

conditions are not satisfied, then a given schema H can not be considered as a BB:

1. The number of fixed positions, O(H), is low (low-order);

2. The distance between the two outermost fixed bits, δ(H), is short (short defining-

length);

3. The fitness of schema H, f (H), is better than the average fitness of the population

(above-average fitness).

Example 1. Consider H1 = 101*011 and H2 = 1*****0 as two random schemata.

It is easy to see schema H1 has not a low-order (O(H1) = 6) because most of positions are

fixed bits, and has not a short defining-length (δ(H1) = 6) because the distance between

the two outermost fixed bits is as large as possible.

Schema H2 has a low-order (O(H2) = 2) but has not a short defining-length

(δ(H2) = 6). Consequently, according to Proposition 1 both schemata could not be

considered as BBs. It is important to note the verification of condition 3 of Proposition 1

is problem-dependent. In other words, it depends on the fitness function of the problem.

Next example approaches all three conditions of Proposition 1.

Example 2. Considering Equation (4-2), let Xn×4 = {x1,x2,x3,x4} be the same

matrix from Example 1 in Section 4.1.3, where x1 is the first column, ..., and x4 the last

column:

Xn×4 =























−0.0023 0.0013 −0.0022 −0.0013

−0.0025 0.0014 −0.0023 −0.0014

. . . .

. . . .

. . . .

−0.0020 0.0010 −0.0020 −0.0012























.



4.2 Schemata Disruption 65

Let V4×4 = {v1,v2,v3,v4} be the population of a GA with four different individ-

uals (subjects):

V4×4 =













1 1 1 1

0 1 0 0

1 0 0 0

0 1 0 1













,

where v1 is the first row, ..., and v4 is the last row. Each subject selects different

combinations of variables (columns) in Xn×4. For instance, v1 selects {x1,x2,x3,x4}, ...,

and v4 selects {x2,x4}.

Moreover, let H1 = 1*** be a schema for subjects v1 and v3 in V4×4. For H1

to be considered as a BB, it is known that all three conditions of Proposition 1 must be

satisfied. Schema H1 has low-order (O(H1) = 1) and a short defining-length (δ(H1) = 0).

Using Equation (3-1) in Section 3.1 to calculate the fitness of schema H1, we have 9:

f (H1) =
fv1(x1,x2,x3,x4)+ fv3(x1)

2 = 3.4937+10.7114
2 = 7.1025.

Calculating the average fitness of all subjects in V4×4, we have:

f (V4×4) =
fv1(x1,x2,x3,x4)+ fv2(x2)+ fv3(x1)+ fv4(x2,x4)

4 = 3.4937+3.9159+10.7114+3.9110
4 = 5.5080.

Despite schema H1 has low-order and a short defining-length, it is possible to

see f (H1) > f (V4×4). Since selecting variables in multivariate calibration often aims to

reduce the fitness function value (i.e., minimization problem), it is clear H1 has not an

above-average fitness and indeed can not be considered as a BB because condition 3 of

Proposition 1 is not satisfied.

Example 3. Assuming the existence of BBs in spectral data from multivariate

calibration, consider v1 (subject 1) and v2 (subject 2) from V4×4 (last example) in

Figure 4.1 generated by schema H1 = **11 and schema H2 = 01**, respectively. In the

reproduction process between subject 1 and subject 2, two new subjects are obtained.

In this example, schema H1 can generate only v1 in V4×4. It has O(H1) = 2; and

δ(H1) = 1. Schema H2 can generate subject v2 as well as subject v4. It has O(H2) = 2; and

δ(H2) = 1. Calculating their fitness function through Equation (3-1), we can obtain 10:

f (H1) =
fv1(x1,x2,x3,x4)

1 = 3.4937
1 = 3.4937.

f (H2) =
fv2(x2)+ fv4(x2,x4)

2 = 3.9159+3.9110
2 = 3.9134.

9Note the values were obtained from Tables 4.2 and 4.3 in Section 4.1.3.
10Values also obtained from Tables 4.2 and 4.3.
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Figure 4.1: Example of an offspring generated from two individu-

als by one-point crossover.

Both schemata have short defining-length and are above-average fitnesses ( f (H1)

< f (V4×4) and f (H2) < f (V4×4)). Considering H1 and H2 as low-order 11, then the

three conditions of Proposition 1 are satisfied and they both could be considered as BBs.

However, this example approaches a simple case with an extremely reduced subset of

variables. On the other hand, in this work we deal with two large datasets (see Chapter 5

for more details). Thereby, the existence of BBs in this type of data can not be assured due

to the presence of high data dimensionality [41, 93, 94]. Even not selecting all variables,

as any individual in the GA population can have large string length, then a given schema

H:

• may not have a small number of fixed positions, which would not satisfy condition

1 of Proposition 1;

• may not have a short defining-length, which would not satisfy condition 2 of

Proposition 1; and

• may not have an above-average fitness, which would not satisfy condition 3 of

Proposition 1.

In other words, considering Proposition 1 it is not possible to guarantee the

existence of BBs in datasets with high data dimensionality 12. In this case, the schemata

have large string lengths. Thus, such schemata tend to have a large defining-length, which

does not satisfy condition 2 of Proposition 1. Moreover, the number of fixed positions in

the schemata tends to be large due to long distances between the first and last fixed bits,

which may increase the amount of fixed bits (not satisfying condition 1 of Proposition 1).

Finally, as stated earlier condition 3 of Proposition 1 depends on the fitness function.

11Half of their positions are fixed, but it is not the most of them.
12According to Proposition 1, every building block is a schema but not all schema is considered as a

building block.
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In addition, as crossover dropped down exactly between the two fixed bits in

subject 1 from Figure 4.1, one schema disruption occurs. It is possible to notice it in the

new subject 1, which means schema H1 is not preserved in the next generation. Then,

significant performance may be lost if H1 should be preserved. For example, Table 4.3

from Section 4.1.3 shows us variables x3 and x4 provide the lowest RMSEP value when

they are together in the same subset with variable x2. Therefore, this indicates H1 should

indeed be inherited by next generations but it does not happen.

According to Goldberg [41], the probability of schemata disruption under

crossover is given by Equation (4-6). This is due to the fact a schema is disrupted ev-

ery time crossover operator falls within its defining-length [47].

Pdisruption(H) =
δ(H)

l −1
, (4-6)

where H is a given schema, δ(H) is the defining-length of schema H, and l is its string

length.

Although schema H1 and schema H2 in this example may be considered as BBs,

their disruption probabilities are the same:

Pdisruption(H1) = δ(H1)
l−1 = 1

3 = 0.3333.

Pdisruption(H2) = δ(H2)
l−1 = 1

3 = 0.3333.

Schema H1 and schema H2 have approximately 33% of probability to be dis-

rupted since crossover operator has three possible places to cross the chromosome. Then,

the disruption probability of a given schema is directly proportional to its defining-

length [41]. As a consequence, the greater the size of defining-length, the greater the

probability of disruption. Therefore, such example also indicates schemata may be com-

monly disrupted in our large datasets (see Sections 5.1 and 5.2) [84].

Finally, another issue may arise. As described earlier, one single variable may

not contribute with some relevant information but it may become important when it is

in conjunction with other variables [18, 56]. Similarly, if two variables are correlated,

they should remain together in the same subset. The presence of one of them without the

other may negatively affect the fitness value. Thus, assuming the third (x3) and fourth (x4)

variables in subject 2 from Figure 4.1 contribute to obtain a more reduced RMSEP value

when they are together or absent in a same subset, subjects from next generation will

not inherit such important characteristic either. This inconvenience also affects the non-

decomposability assumption approached by Hypothesis 1 [83]. Consequently, significant
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information may be lost through crossing operations between two individuals of the

population even when a schema disruption does not occur 13.

Such three examples indicate Proposition 1 may not be totally satisfied for the

variable selection procedure in multivariate calibration. Therefore, the BBs formation be-

comes unlikely in high dimensionality problems. Furthermore, all examples provide con-

siderable evidences about schemata disruption in this context as well as it affects the non-

decomposability assumption of the problem, which supports our second hypothesis [84].

As far as we know, related works in literature have not considered this issue

either [37, 64, 79, 87, 102, 103, 104]. Although being possible to use competent GAs

to avoid schemata disruption (see Section 3.5), they are not suitable for all types of

representation and may demand a significant computational effort when dealing with

large datasets [41, 50, 99]. In this sense, a hybridization between concepts of compact

GA (Section 3.5.1) and epistasis (Section 3.5.3) may be a better alternative to tackle all

those inconveniences (see Section 4.6). Next sections present our proposed algorithms.

4.3 Genetic Algorithm Implementation

Following implementations from some main works in literature which have

used GAs for variable selection in multivariate calibration [5, 61, 74], our GA uses a

chromosome with a fixed number of genes (as many as the variables), each one of them

being just 1 bit long (0 = absent variable; 1 = present variable). Crossover operator has

been used 14. Algorithm 4.1 shows the pseudocode for the GA implementation.

In Algorithm 4.1, fitness function consists in the number of selected variables

by each individual. Thus, solutions are evaluated based on the number of selected

variables. Parameter pc (0 ≤ pc ≤ 1) is the probability of crossover occurrence. The terms

offspring_best and offspring_worst consist in two counters which indicate, respectively,

the number of children better and worse than parents. Moreover, all individuals are

arranged in pairs (parents) and used to generate two new individuals. Finally, we use

rand function to initialize the population of individuals. It is a Matlab c© built-in function

which yields an uniform random number.

13Even not happening a schema disruption, the problem decomposition may separate the variables into
two or more interdependent subproblems.

14Different operators can be looked into based on the problem settings. However, in this study, we are
focusing only on the use of one-point crossover as recombination operator.
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Algorithm 4.1: Proposed GA implementation.
1: Let N be the population size
2: Initialize the population of individuals using uniformly distributed random numbers

or some heuristic
3: for i = 1 : MaxGenerations

4: Evaluate all individuals based on their fitness
5: if rand < pc

6: Generate a fixed number of solutions using crossover operator
7: if offspring fitness is better than parents fitness
8: Replace parents by children increasing the number of offspring_best
9: else

10: Ignore children and increase the number of offspring_worst
11: end if

12: end if

13: end for i

4.4 Heuristics

In this work, we are proposing two heuristic strategies into the GA implementa-

tion: i) initial individuals generation for the proposed GA, which aims to select the best

chromosomes (schemata candidates) as initial solutions; and ii) schemata identification,

which aims to determine the possible schema generating the best chromosomes. In this

case, best chromosomes are featured by the set of solutions providing the best fitness val-

ues (e.g., smallest RMSEP). Finally, the best schema is determined by the fixed positions

(genes set as 1) of the best chromosome over generations.

4.4.1 Heuristic for initial solutions generation

This heuristic applies a relatively simple strategy based on the Successive Pro-

jections Algorithm [6]. It aims to reduce the model prediction error (RMSEP) by initially

selecting only (near) orthogonal variables (Sections 6.2.1 and 6.2.2 show some outcomes).

Algorithm 4.2 shows the pseudocode for such heuristic 15.

In Algorithm 4.2, parameter m is the number of variables to be initially selected

and N is the number of individuals in the GA population. First of all, it is obtained in step

3 a copy of matrix X into Xpro jected , where X is an n × k matrix from the calibration set

(see Chapter 5). Then, it is performed in step 4 the square norm of each column of matrix

Xpro jected . In other words, square norm is performed by adding the square of all elements

from each column of Xpro jected and storing the sum outcomes in the row vector norms,

where each element of norms represents the respective column of matrix Xpro jected .

15It is important to note Algorithm 4.2 performs the step 2 of Algorithm 4.1.
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Algorithm 4.2: Proposed heuristic to generate initial solutions.
1: Input parameters: X and m

2: for i = 1 : N

3: Xpro jected = X

4: norms = sum(X2
pro jected)

5: norm_max = max(norms)
6: Xpro jected =

Xpro jected∗norm_max

normsi

7: [Q, R, order] = qr(Xpro jected)
8: chain = order(1 : m)
9: Populationi,chain = 1

10: end for i

Shortly thereafter, step 5 obtains the largest element from vector norms. Then,

step 6 scales the i-th column of Xpro jected so that it becomes the largest column. Scaling

the i-th column consists in multiplying it by the value obtained in the previous step and

dividing it by the norm of column i.

Step 7 uses qr function to produce an orthogonal-triangular decomposition

divided into two different matrix (Q and R). The qr is a Matlab c© built-in function which

produces an orthogonal-triangular decomposition by using mathematical operations. It

can be used to provide an orthogonal basis of the column space of a matrix. In its general

form, it produces an n × k upper triangular matrix R and an n × n orthogonal matrix Q

so that Xpro jected = QR.

Vector order contains the order of the most orthogonal columns (variables)

according to function qr. In this case, step 8 obtains the m first variables from such vector

and stores them in vector chain. Finally, step 9 sets “1” in each gene of the i-th individual

according to the index of each variable.

It is important to note the qr function uses reflections (projections operation)

to compute matrix Q and obtain an orthogonal basis. Function qr does not create

new variables. Instead, we are only using the pivoting of the qr function. In other

words, it aims to select the most orthogonal variables based on mathematical projections

operation [6, 105].

Finally, it is also important to emphasize this heuristic is not aware about the

possible schemata formation or disruption. It only tries to select the best variables (most

orthogonal to each other) from the dataset in order to initially compose the calibration

model.

4.4.2 Heuristic for possible schemata identification

By using this second heuristic, we aim to identify the schema which possibly

generates the best individuals in the GA population. Algorithm 4.3 provides the pseu-
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docode for the possible schemata identification heuristic.

Algorithm 4.3: Proposed heuristic to identify possible schemata.
1: for i = 1 : MaxGenerations

2: Evaluate all individuals based on their fitness (RMSEP value)
3: Sort all individuals in ascending order by their fitness
4: Obtain the indexes of the best individuals
5: Assume that one schema is formed by the chromosome of the best individual in

which “1” means a fixed position in the schema and the respective variable is to be
selected

6: sum = fitness(best individual)
7: count = 1
8: for j = 2 : number of best individuals
9: if schema is included in individual j

10: sum = sum + fitness(individual j)
11: count = count + 1
12: enf if

13: end for j
14: schema_fitness = sum

count

15: end for i

In Algorithm 4.3, the fitness function consists in the RMSEP (Equation (2-3))

value obtained by each individual. Firstly, step 2 performs an individual evaluation and

step 3 sort them from the best to the worse one. Then, step 4 obtains the indexes of

the x% best individuals in the population, where x can be empirically chosen. Step 5

generates one matrix with those best individuals 16 and chooses the best individual as

the one who provides the best fitness (smallest RMSEP) value assuming it as the schema

which generates the better ones.

Step 6 obtains the fitness of the best individual from step 4. From step 7 to 11,

it is checked which individuals may be generated by the schema. For this, we use the

Matlab c© buit-in function min(schema, individual j). Such function returns an array with

the smallest elements taken from parameters schema or individual j. In other words, it

verifies if individual j, 2 ≤ j ≤ number of best individuals, contains the same fixed

bits (genes) from the schema. If so, then the individual fitness is added and a counter

is incremented. Finally, step 14 performs Equation (3-1) and obtains the schema fitness.

It is relevant to note we are assuming genes “1” from the best individual 17

at each generation are fixed positions of a schema which possibly generates the best

individuals (chromosomes with the most informative variables). Then, the fitness of all

16In such matrix, each row represents an individual and each column indicates the respective variable to
be (or not) selected.

17In the context of this work, the best individual is the one who provides the smallest RMSEP value.
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best individuals containing such schema is added so that the schema fitness can be

calculated according to Equation (3-1).

By using such heuristic, we aim to analyze the possible schemata disruption over

generations (see Section 6.2). Finally, it is also relevant to emphasize the strategy used in

this heuristic is naive and it is not able to ensure the formation of schemata neither avoid

their disruption.

4.5 Local Search-based Operator

As claimed in Section 4.2.1, recombination operators tend to cause the disruption

of schemata in standard GA implementations. Considering this issue as an inconvenience

when selecting variables in large datasets from multivariate calibration models, we are

also proposing an operator which performs a local search in order to find better individuals

(solutions) and reduce schemata disruption. This operator execute a simple local search

by modifying particular genes (variables) in the chromosome. Algorithm 4.4 shows the

pseudocode for the local search-based operator 18.

Algorithm 4.4: Proposed local search-based operator.
1: for i = 1 : number of individuals / 2
2: Obtain individual 1 as f ather

3: Obtain individual 2 as mother

4: son = f ather

5: daughter = mother

6: j = 1
7: Mutate gene j in son

8: while fitness son is worse than fitness f ather

9: Undo the previous mutation
10: j = j + 1
11: Mutate gene j in son

12: end while

13: j = 1
14: Mutate gene j in daughter

15: while fitness daughter is worse than fitness mother

16: Undo the previous mutation
17: j = j + 1
18: Mutate gene j in daughter

19: end while

20: Replace f ather by son and mother by daughter

21: end for i

18It is important to note Algorithm 4.4 performs the step 6 of Algorithm 4.1 by using a simple local
search instead of crossover operator.
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In Algorithm 4.4, steps 2 and 3 select two different individuals from the popula-

tion to participate in the reproduction process. Instead of using a recombination operator,

steps 6-12 and 13-19 go through each gene of both chromosomes mutating it in order to

obtain an offspring better than parents. Such algorithm performs a naive strategy and is

based on the Variable-Neighborhood Search method [94].

It is noteworthy Algorithms 4.2, 4.3 and 4.4 serve as complement for Algorithm

4.1. Each one utilizes a different heuristic strategy aiming to explore the research empiri-

cism. Their goal consists in improving the standard GA outcomes.

Finally, next section presents two versions of a novel approach for variable

selection in multivariate calibration (the Epistasis-based Feature Selection Algorithm).

Such algorithm uses two different enhanced strategies in order to avoid the schemata

disruption by preventing the problem decomposition.

4.6 Epistasis-based Feature Selection Algorithm

Considering the issues raised up by Sections 4.1.2 (non-decomposability as-

sumption) and 4.2.1 (schemata disruption hypothesis), this work is presenting an

Epistasis-based Feature Selection Algorithm (EbFSA). According to Davidor [26], the

effect of epistasis lies in the ability to predict the value of a whole from the value of its

parts. However, finding epistatic genes is computationally difficult in high dimensionality

problems [36]. Then, instead of performing an individual gene (variable) analysis, we are

assuming the Pearson’s linear correlation coefficient as the epistatic relation of the vari-

ables in our datasets (see Chapter 5). Such statistical measure makes easy to assess the

interdependence among variables [56, 63].

The goal consists in performing an epistasis analysis by using the Pearson’s

linear correlation coefficient (ρ) and avoiding the schemata disruption. Avoiding the

schemata disruption is crucial to prevent the problem decomposition, especially when

dealing with high data dimensionality and interdependent subproblems. Therefore, we

are proposing two different versions of EbFSA (EbFSA_v1 and EbFSA_v2). Our both

deterministic approaches are based on the Compact Genetic Algorithm (Algorithm 3.1)

and concept of epistasis (Section 3.5.3). Instead of creating a population of individuals

and applying a stochastic search, EbFSA uses only one chromosome to represent and

deterministically select the most informative variables to compose the calibration model.

4.6.1 EbFSA_v1

In the first version of EbFSA, the chromosome is initially created by selecting

the most linear independent variables (columns) in the n× k matrix Xcal . To this end, the
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Pearson’s linear correlation coefficients matrix Rk×k is obtained from Xcal . For instance,

if a variable with index j is (near) orthogonal to another variable with index i (R j,i ≈ 0),

then both variables (genes) are set from 0 to 1 in the chromosome.

Soon after, matrix Rk×k is analyzed again and the most correlated variables

are selected. Thereby, two correlated variables (R j,i ≈ 1) remain together in the same

subset avoiding possible disruptions. However, the model prediction error (RMSEP) is

calculated at every variables insertion in this stage. Thus, if two dependent variables do

not collaborate to reduce RMSEP, then both variables are discarded. Algorithm 4.5 shows

the pseudocode for EbFSA_v1:

Algorithm 4.5: Proposed EbFSA_v1.

1: Obtain matrix Rk×k from matrix Xcal by using (for example) corrcoe f Matlab c©

built-in function
2: Generate an unique individual as a null row vector v1×k = {0, 0, ..., 0}
3: for i = 1 : k

4: for j = (i + 1) : k

5: if R j,i < 0.0001
6: vi = 1
7: v j = 1
8: end for j

9: end for i

10: Calculate and assess RMSEP according to Equation (2-3)
11: for i = 1 : k

12: for j = (i + 1) : k

13: if R j,i > 0.9999
14: vi = 1
15: v j = 1
16: Discard both variables if RMSEP was not reduced
17: end for j

18: end for i

19: Plot all selected variables

In Algorithm 4.5, as matrix Rk×k is symmetric, only its lower triangular part is

traversed to select the appropriate variables. In both stages, a precision of 10−4 (0.0001

and 0.9999) is empirically used. Note that a greater precision may force the algorithm

to select a more reduced number of variables, which could imply in reducing the model

predictive ability (i.e., increasing RMSEP). On the other hand, a lower precision may

cause the algorithm to select a larger number of variables, and this could also increase the

model prediction error.
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4.6.2 EbFSA_v2

In the second version of EbFSA, we use a different strategy. Instead of analyzing

matrix Rk×k for every variable, it is obtained the sum of each column of matrix Rk×k. The

value of each column sum is ordered, and the row vector index1×k contains the indexes of

the sorted values. Then, one variable is selected at a time according to the index stored in

index1×k. If its fitness value (RMSEP) does not improve the model predictive ability, the

variable is discarded. At the end, the model contains only the most informative variables.

Algorithm 4.6 shows the pseudocode for EbFSA_v2.

Algorithm 4.6: Proposed EbFSA_v2.

1: Obtain matrix Rk×k from matrix Xcal by using (for example) corrcoe f Matlab c©

built-in function
2: Generate an unique individual as a null row vector v1×k = {0, 0, ..., 0}
3: Obtain the columns sum values of matrix Rk×k in vector sum1×k

4: Sort the values of vector sum1×k and store the indexes of the sorted values in vector
index1×k

5: for i = 1 : k

6: vindexi
= 1

7: Check RMSEP according to Equation (2-3)
8: Discard this variable if RMSEP was not reduced
9: end for i

10: Plot all selected variables

The strategy used in Algorithm 4.6 is based on columns of matrix Rk×k. Each

column index in matrix Rk×k represents the respective column (variable) index in matrix

Xcal . If the sum of a column values is low, it means the variable is minimally correlated

to the other variables. On the other hand, if the sum of a column values is high, then such

variable is strongly correlated to the others.

It is clear to see EbFSA_v2 has a more improved strategy than EbFSA_v1. In

the first version, two selected variables can be discarded together if both do not reduce

RMSEP. This issue may ignore some relevant variable previously selected. Differently,

EbFSA_v2 is able to select informative variables based on epistatic relation through the

sum of the Pearson’s linear correlation coefficients of each column in matrix Rk×k.

4.7 Summary

When the problem can not be properly decomposed, standard GAs with binary

representation tend to lead to an undesirable performance. In this context, decision

variables from spectroscopic data in multivariate calibration models usually contain
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strong multicollinearity and an attempt of decomposition by crossover can directly affect

the final result.

In this work, two hypotheses are proposed. Hypothesis 1 states variable selection

procedure in multivariate calibration can be considered as a non-completely decompos-

able problem. Three numerical examples provide significant evidences about the viability

of such hypothesis and demonstrate Equation (4-2) can not be satisfied. Our first hypoth-

esis is already published by Paula et al. [83].

Building block is a low-order and short defining-length schema with an above-

average fitness. It is able to generate the best subjects in a GA population. In this sense,

Hypothesis 2 claims recombination operators tend to cause schemata disruption. One

proposition and three additional numerical examples show that, although not necessarily

there exists building blocks formation in spectral data from multivariate calibration due to

high dimensionality, the disruption of schemata directly affects the non-decomposability

assumption in the first hypothesis. Our second hypothesis is already published by Paula

et al. [84].

It is noteworthy the numerical examples for our both hypotheses are relatively

simple and lack mathematical proofs to demonstrate their generalization. This issue

extrapolate the goal of this work, which consists (not only) in showing their veracity

and applicability in our large datasets.

We propose a GA implementation to provide additional evidences about the

hypotheses feasibility. We also present one heuristic for initial individuals generation;

another heuristic strategy for possible schemata identification; and one simple local search

operator to reduce schemata disruption. They are all empirically implemented in order to

improve the standard GA implementation.

Additionally, two different versions of a novel approach for variable selection

are presented: Epistasis-based Feature Selection Algorithm (EbFSA). EbFSA avoids

schemata disruption by preventing the problem decomposition. It uses only one individual

and the Pearson’s linear correlation coefficient as an epistatic relation in order to select

the best variables to compose the calibration model.



CHAPTER 5
Experimental

This work uses two different datasets. Dataset 1 consists on wheat samples, and

dataset 2 corresponds to gas mixtures. Section 5.1 and Section 5.2 describe these both

datasets, respectively.

5.1 Dataset 1

Dataset 1 employed in this work consists in whole-wheat grain samples obtained

from vegetal material from occidental Canadian producers. Standard data were deter-

mined at the Grain Research Laboratory as in works of Paula et al. [85] and Soares et

al. [101]. The dataset for the multivariate calibration study consists on 690 Near-Infrared

Reflectance (NIR) spectra of whole-kernel wheat samples, which were used as shoot-out

data in the 2008 International Diffuse Reflectance Conference [27].

Protein concentration in the analyzed samples was chosen as the property of

interest. Spectra were acquired by a spectrophotometer in range of 400-2500 nanometers

(nm) with a resolution of 2 nm. In this work, the employed NIR was in range of 1100-2500

nm. In order to remove undesirable features, the first derivative spectra were calculated

by using the Savitzky-Golay filter with a second-order polynomial and an eleven point

window [85, 87, 104].

Reference values of the protein concentration in the wheat samples were deter-

mined in laboratory by Kjeldahl method [11]. Such method causes the organic substances

destruction with concentrated sulfuric acid in the presence of a catalyst and by the ac-

tion of heat, and subsequent distillation of nitrogen from the sample. On the other hand,

the use of indirect instrumental techniques such as NIR and mathematical models (MLR)

allow protein level to be determined without destroying the sample.

Kennard and Stone [57] algorithm was applied to the resulting spectra to divide

the samples into three sets: calibration, validation and prediction. Calibration set con-

tains 389 samples with 690 variables each, and it was used to calculate the regression

coefficients. Validation and prediction sets contains 193 samples both. Validation set was
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employed to guide the variable selection in GA. Prediction set was only employed in the

final performance assessment of the resulting regression model.

Figure 5.1 plots the NIR spectra of dataset 1. The spectra in the chart come from

the calibration set (Xcal) which contains 389 samples, and each sample has 690 variables.

It is possible to check the absorbance variations from different properties contained

in the wheat samples. In general, these variations can cause wave mutual disturbance

(interference) implying in considerable rapprochement (dependency) among variables

from the spectra [23, 39, 66]. This issue means that in most of wavelength regions there

may be a relatively large number of correlated variables.
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Figure 5.1: NIR spectra of dataset 1 [83].

5.2 Dataset 2

In this work, we also used one petrochemical dataset composed of samples

generated on a laboratory scale in transmittance. Such dataset was used as shoot-

out data in the International Diffuse Reflectance Conference (IDRC) 2014 (www.idrc-

chambersburg.org) [55]. The sample in this dataset corresponds to gas mixtures in the gas

phase measured in transmittance. It was collected in laboratory under various conditions

of pressure and temperature, and the data correspond to NIR spectra.

Four participants competed in IDRC 2014. Each participant performed a pre-

processing to apply their own techniques in regions which they consider to have greater

climate influences. However, in our approach we did not perform any pre-processing to

select specific regions of spectra in order to obtain better outcomes [106].

Dataset spectra was divided by IDRC organization into three sets: calibration,

validation and test (or prediction). Each one contains 144, 60 and 36 samples with 3999

features (variables), respectively. Calibration samples were used to obtain the regression
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model. Validation set was employed to guide the selection of variables. Test set was used

in the final performance assessment of the resulting MLR model.

Figure 5.2 plots the NIR spectra of dataset 2. The spectra also come from the

calibration set. As in Figure 5.1, it is possible to note a significant approximation between

the spectral regions which indicates a considerable correlation in the spectral regions.
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Figure 5.2: NIR spectra of dataset 2.

5.3 Computational Platform

All tests were performed in a desktop personal computer with a Intel core i7

2600 (3.4 GHz) processor and 8 GB of RAM memory. Matlab c© R2015a software has

been used for simulations and data processing. The built-in function pinv() was applied to

perform the matrix inverse calculation involved in Equation (2-2). Finally, it is noteworthy

that all outcomes were obtained by averaging 30 trials each.

5.4 Summary

This doctoral thesis uses two datasets as benchmark in order to generate and

obtain outcomes. Dataset 1 consists in whole-wheat grain samples. Such samples were

used as shoot-out data in the IDRC 2008 [27] and have been used by several works from

literature [64, 85, 87, 101, 104]. Dataset 2 consists in gas mixtures samples. It was used as

shoot-out data in the IDRC 2014 [55], which contained four participants and participant

3 was the champion. The tests were performed in a specific computer and a scientific

software have been used to simulate and process the datasets.



CHAPTER 6
Results and Discussion

This chapter presents all results obtained by using our proposed algorithms.

Initially, Section 6.1 presents a linear correlation analysis in dataset 1 and dataset 2 in

order to reinforce the non-decomposability assumption approached by the first hypothesis

(Section 4.1.2) due to the multicollinearity problem.

In order to enhance the investigation performed by the second hypothesis (Sec-

tion 4.2.1), Section 6.2 presents a schemata disruption analysis using two different ap-

proaches: i) crossover operator; and ii) local search. The first one utilizes crossover oper-

ator to split the individuals in the GA population in order to form new offspring. The last

one is based on a simple local search, which aims to reduce schemata disruption usually

caused by recombination operators.

Section 6.3 provides the outcomes from both datasets by EbFSA_v1 and briefly

discuss the correlation between neighbor variables in spectral regions. Section 6.4

presents the outcomes from dataset 1 and dataset 2 obtained by EbFSA_v2. Finally, Sec-

tion 6.5 shows a comparison between our proposed algorithms and different techniques

from literature.

6.1 Non-Decomposability Assumption

6.1.1 Linear correlation analysis in dataset 1

Figure 6.1 1 shows a hot color map representing the correlation among all

variables from Figure 5.1 (dataset 1):

1This chart was generated by using the corrcoe f and imagesc Matlab c© built-in functions.
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Figure 6.1: Linear correlation analysis among all variables from

dataset 1 [83].

The corrcoe f Matlab c© built-in function yields a symmetric matrix R690×690

calculated from the input matrix X389×690 (dataset 1) whose rows are observations

(samples) and columns are features (variables). This function is calculated by Pearson’s

linear correlation coefficient (see Section 2.4.3). The imagesc Matlab c© built-in function

displays the absolute value of elements from matrix R690×690 as a symmetric image. In

such image, the more elements close to 1 a variable vector has, the more correlated to

other variables it is. Similarly, the closer to zero, the smaller the correlation degree.

One can notice in Figure 6.1 that in fact there is considerable correlation among

most of variables. For example, variable 320 and variable 480 yield Pearson’s linear

correlation coefficient ρ320,480 = 0.0172 indicating they are minimally correlated and

could be possibly selected to contribute for the increasing of model predictive ability.

On the other hand, variables 646 and 647 yield ρ646,647 = 0.9940, which indicates they

are almost totally correlated and both contribute to increase the multicollinearity in the

model. It is important to note that by selecting the most orthogonal variables becomes

possible to reduce the multicollinearity and obtain an adequate accurate model 2 [23].

However, not all orthogonal variables provide relevant information about the property of

interest [56].

Through Figure 6.2 it is possible to graphically notice that indeed variables 646

and 647 from Figure 6.1 are strictly correlated over the 389 samples:

2In the context of this work, an accurate model implies in a model with a considerable predictive ability.
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Figure 6.2: Linear correlation analysis between variables 646 and

647 from Figure 6.1.

Figure 6.3 shows variable 593 is the one who presents the lowest level of

correlation between any other variable from dataset 1. It is possible to perceive the

predominant dark color in the chart, which indicates that, in fact, variable 593 is linearly

independent of most other variables (ρ593,i ≈ 0, where 1 ≤ i ≤ 690 and i 6= 593). The

clear dash line highlights variable 593 is directly correlated with itself (ρ593,593 = 1).
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Figure 6.3: Linear correlation analysis between variable 593 and

the others from dataset 1.

Similarly, Figure 6.4 demonstrates variable 548 is the one who presents the

highest level of correlation among the others from dataset 1. The predominant bright

color indicates its significant linear correlation (ρ548,i ≈ 1, where 1 ≤ i ≤ 690 except a

few variables). Precisely because variable 548 is strongly correlated with the majority, its
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presence in the model may become important since it can carry relevant information from

the others [56].
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Figure 6.4: Linear correlation analysis between variable 548 and

the others from dataset 1.

6.1.2 Linear correlation analysis in dataset 2

Considering Figure 5.2 in the last chapter, Figure 6.5 shows a hot color map

representing the linear correlation among all variables from dataset 2 (see Section 5.2):
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Figure 6.5: Linear correlation analysis among all variables from

dataset2.

As in Figure 6.1, there is considerable correlation among most of variables in

dataset 2. For instance, the spectral region between variables 2500 and 3999 is the most
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bright in the chart, which indicates it contains a large number of correlated variables (high

level of multicollinearity).

Figure 6.6 shows variable 2 is the most independent in relation to all other

variables from dataset 2:
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Figure 6.6: Linear correlation analysis between variable 2 and the

others from dataset 2.

On the other hand, Figure 6.7 shows variable 3202 is the most correlated to all

other variables from dataset 2:
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Figure 6.7: Linear correlation analysis between variable 3202 and

the others from dataset 2.

Finally, it is noteworthy that Figures 5.1, 5.2, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6 and

6.7 provide additional evidences about the non-decomposability assumption for the
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variable selection procedure in multivariate calibration. Therefore, they strengthen our

first hypothesis (see Section 4.1.2).

6.2 Analysis of Possible Schemata Disruption

6.2.1 Using crossover operator in dataset 1

Figure 6.8 shows an analysis of schemata disruption using the proposed GA

implementation with crossover operator (see Algorithm 4.1):
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Figure 6.8: Schemata disruption analysis using dataset 1 [84].

It is possible to observe the offspring from worst individuals tends to increase

while the offspring from best individuals 3 tends to decrease. It indicates an evidence that

the possibility of schemata disruption raises as crossover rate increases, which directly

implies in our fist hypothesis (Section 4.1.2).

On the one hand, if selective pressure 4 is high, an uniform population can be

quickly obtained, and this will lead to the loss of diversity. On the other hand, a reduced

disruption factor can decrease the crossover probability, and this will lower the number

of schemata exchange. Thus, we claim this may occur due to the fact that a schema can

be lost a few times in many possible cross sites and its disruption factor comes down to a

specific value [30, 41, 47]. Moreover, this issue directly affects the non-decomposability

assumption of the variable selection procedure in multivariate calibration (see Section

4.2.1).

3It is important to note that in the context of Figure 6.8, the best individuals are those who select the
smallest number of variables.

4Selective pressure is the tendency to select only the best individuals of the current generation to
propagate to the next.
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Figure 6.9 shows the obtained-prediction error values as well as schema fitness

using crossover operator:
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Figure 6.9: Schemata disruption analysis using dataset 1 and a GA

population with 500 individuals.

In this simulation, we do not use selective pressure neither elitism 5. Instead, each

parent participates in a single crossover and the parents are always replaced by offspring 6.

Consequently, the average RMSEP and schema fitness curves may vary over generations.

Schema fitness was obtained by using the strategy presented in Algorithm 4.3

with 50% of the best individuals. It is clear to notice in Figure 6.9 the average RMSEP

values tend to decrease over generations. Finally, schema fitness provides a considerably-

reduced initial RMSEP value. As described in Section 3.2, if schemata are short and

has low-order, the number of desirable schemata tends to increase. Otherwise, crossover

operator may frequently disrupt high-order or large schemata.

Figure 6.10 presents the same comparison in the previous figure. The difference

here is the use of the heuristic presented in Algorithm 4.2 (initial solutions generation).

5Elitism means that at least one changeless copy of the best solution of current generation is transferred
to the new population so that the best solution can survive to successive generations.

6The application of operators without any selective pressure does not modify the population statistics
properties [74].
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Figure 6.10: Schemata disruption analysis using dataset 1 and the

initial solutions heuristic with 500 individuals.

One can observe the use of such strategy directly implies in a more reduced

initial RMSEP value due to the fact that (near) orthogonal variables are initially selected.

However, it is also possible to observe an even more significant variation in schemata

fitness curve. Although providing RMSEP values below the average, this issue is a

relevant evidence that the best schemata may have been broken at some generations,

which implies in the abrupt curve changes.

6.2.2 Using crossover operator in dataset 2

Figure 6.11 shows the average RMSEP and schema fitness comparison using

dataset 2:
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Figure 6.11: Schemata disruption analysis using dataset 2 and a

GA population with 500 individuals.
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The average RMSEP curve stabilizes at (approximately) the 10th generation

while the schema fitness curve remains almost constant. In this case, as we do not

use selective pressure neither elitism, the best individuals in the population are not

preserved. Consequently, the RMSEP value may change abruptly, which could explain

some variations in the average RMSEP curve. Moreover, considering the strategy used

in Algorithm 4.3, we believe the best schemata (i.e., the chromosomes of the best

individuals) were not able to generate the 50% of the best individuals in the population,

which corroborates the curve constancy.

Finally, Figure 6.12 shows the same comparison using the heuristic presented in

Algorithm 4.2. It is possible to notice a similar behavior of both curves in comparison

with Figure 6.11. Although providing a more reduced initial average RMSEP value, such

issue indicates the use of the heuristic (Algorithm 4.2) in this case has not significantly

improved the outcomes (see Table 6.5 for more details).
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Figure 6.12: Schemata disruption analysis using dataset 2 and the

initial solutions heuristic with 500 individuals.

6.2.3 Using local search operator in dataset 1

Figure 6.13 shows the obtained results by using the proposed local search-based

operator (see Algorithm 4.4):
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Figure 6.13: Schemata disruption analysis using dataset 1 with

initial solutions heuristic, local search operator and

500 individuals.

It is possible to notice a significant initial RMSEP reduction as well as a more

reduced schema-fitness curve. Such chart demonstrates the use of a simple local search

operator is able to provide better outcomes when compared with crossover operator.

6.2.4 Using local search operator in dataset 2

Figure 6.14 shows the same comparison in Figure 6.12 but using local search

instead of crossover operator. In this case, the local search operator (besides also con-

verging quickly) provided soft curves indicating a significant reduction in the schemata

disruption.
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Figure 6.14: Schemata disruption analysis using dataset 2 with

initial solutions heuristic, local search operator and

500 individuals.
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The local search improves the variable neighborhood exploration and tends to

reduce the schemata disruption [94]. However, even reducing the schemata disruption, the

local search employed in Algorithm 4.4 is simple and can cause it at some generations. For

example, the RMSEP value has been steadily reduced until the 25th generation in Figure

6.13. At that point, its value was sharply increased which indicates the best schema could

be possibly disrupted.

Finally, it is important to highlight that Figures 6.8, 6.9, 6.10, 6.11, 6.12, 6.13 and

6.14 provide additional and relevant evidences for the schemata disruption investigation

approached in Section 4.2.1. Then, they all fortify our second hypothesis.

6.3 Results for Epistasis-based FSA version 1

Table 6.1 summarizes all obtained outcomes by using the proposed EbFSA_v1:

Table 6.1: EbFSA_v1 outcomes.

Dataset 1 EbFSA_v1

RMSEP 0.0624
MAPE 1.46%
PRESS 12.04

Number of variables 57

Dataset 2 EbFSA_v1

RMSEP 0.0050
MAPE 3.78%
PRESS 0.0009

Number of variables 249

It is possible to see EbFSA_v1 yielded significantly reduced model prediction

error values when applied into dataset 2. On the other hand, it selected a smaller number

of variables from dataset 1. Since dataset 2 has a considerably larger number of variables

(almost 4000), we believe the algorithm tends to select more informative variables to

compose the calibration model. However, Section 6.4 shows this does not happen when

using EbFSA_v2.

Figures 6.15 and 6.16 show the variables (red dots) in the spectral regions

selected by EbFSA_v1 from dataset 1 and dataset 2, respectively:
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Figure 6.15: Selected variables by EbFSA_v1 from dataset 1.
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Figure 6.16: Selected variables by EbFSA_v1 from dataset 2.

Such variables were selected based on the Pearson’s linear correlation coef-

ficients in matrix Rk×k, which is obtained from matrix Xn×k (X389×690 for dataset 1,

and X144×3999 for dataset 2). Those coefficients were considered as the epistatic rela-

tion among variables (see Section 3.5.3). For instance, correlation coefficient value close

to zero (ρi, j < 0.0001) indicates two variables are (near) linearly independent and both

could be selected 7. Correlation coefficient values close to 1 (ρi, j > 0.9999) indicate two

variables are strictly correlated, and they are selected to compose the model only if the

model prediction error is reduced (they are discarded otherwise). For more details, Algo-

rithm 4.5 must be checked. It is important to note the analysis of variables spread over

different spectral regions is beyond the scope of this work.

7As discussed in Chapter 2, independent variables usually provide more significant information about
the problem [39].
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Below are the index of all (fifty-seven) variables in Figure 6.15:

10 13 19 26 42 50 67 78 90 102 105 143 146 158 190 203 204 211 230 236 244 290 294

303 309 318 319 328 333 334 338 370 388 389 414 423 425 433 444 456 466 478 503

537 554 593 598 599 602 617 627 640 646 647 651 668 672.

These are the most informative variables selected by EbFSA_v1 from dataset 1.

Most of them are linearly independent (orthogonal) of each other. However, one single

variable is not necessarily orthogonal to all other variables. For example, variables 10

and 294 have ρ10,294 = 0.0001 (close to zero), which indicates they are (near) linearly

independent. On the other hand, variables 10 and 13 have ρ10,13 = 0.9999 (close to 1)

indicating they are strongly correlated. Although variables 10 and 13 are correlated, they

are (near) orthogonal to at least one other selected variable and, precisely because they

are correlated, both together in the same subset tend to collaborate to reduce the model

prediction error. As previously discussed, the presence of one without the other usually

implies in loss of performance since a dependent variable carries information from the

other one to which it linearly depends [56].

Figure 6.17 shows a zoom in between variable indexes 600 and 690 in Figure

6.15. It is possible to see in such spectral region the selected variables 602, 617, 627,

640, 646, 647, 651, 668 and 672 (the nine last variables in Figure 6.15). This chart

demonstrates those selected variables are independent to at least one other selected

variable spread over the sample, but two or more neighboring variables can be correlated.

Therefore, some variables are correlated to their neighboring variables 8.
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Figure 6.17: Zoom in the spectral region between indexes 600 and

690 in Figure 6.15.

8Figure 6.2 graphically demonstrates variable 646 is strongly correlated with variable 647, which is its
neighbor.



6.4 Results for Epistasis-based FSA version 2 93

According to Atkins [7], all the variables which make up the same spectroscopic

band (spectral region) may be highly correlated to each other as they result from the same

physical process. That is, a band on the spectrum represents a spectroscopic transition

which is associated with the molecular structure. Thus, all variables of this same band

represent the same phenomenon. Because of the spectroscopic effect of band enlargement,

it is possible to check bands instead of a vertical line representing the transition. Then,

this enlargement can cause the variables close to the one of greater intensity to be highly

correlated because they result from the same observed phenomena.

Spectra may also show band overlays, which makes a band appear as irregu-

lar [7]. In this case, although it looks like a same band, some variables result from differ-

ent phenomena with different variabilities and correlations between the variables of the

(apparent) same band. Therefore, it is to be expected the nearest variables are the most

correlated among themselves even when they make up the (probable) same band [7, 8].

Finally, it is important to emphasize it is beyond the scope of this work to investigate the

reason of why such phenomena happens.

6.4 Results for Epistasis-based FSA version 2

Table 6.2 summarizes all obtained outcomes by using the proposed EbFSA_v2

and compares them with EbFSA_v1:

Table 6.2: Outcomes comparison between EbFSA_v1 and

EbFSA_v2.

Dataset 1 EbFSA_v1 EbFSA_v2

RMSEP 0.0624 0.0792

MAPE 1.46% 1.58%

PRESS 12.04 15.28

Number of variables 57 131

Dataset 2 EbFSA_v1 EbFSA_v2

RMSEP 0.0050 0.0018

MAPE 3.78% 6.56%

PRESS 0.0009 0.0001

Number of variables 249 7

It is possible to see EbFSA_v1 is better than EbFSA_v2 regarding dataset 1.

Nevertheless, EbFSA_v2 is able to overcome EbFSA_v1 by selecting a considerably

reduced number of variables from dataset 2 and obtaining a more reduced RMSEP value.



6.4 Results for Epistasis-based FSA version 2 94

Figures 6.18 and 6.19 illustrate all variables in the spectral regions selected by

EbFSA_v2 from both datasets. Such as in EbFSA_v1, variables were picked based on the

Pearson’s linear correlation coefficients (see Algorithm 4.6).
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Figure 6.18: Selected variables by EbFSA_v2 from dataset 1.
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Figure 6.19: Selected variables by EbFSA_v2 from dataset 2.

Considering Figure 6.19, the index of all (seven) selected variables from dataset

2 are: 1 2 1233 1234 1803 2187 2441. Table 6.3 shows the Pearson’s linear correlation

coefficient values between each one 9:

9As matrix R is symmetric (see Example 3 in Section 4.1.3), only its superior triangular part is showed.
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Table 6.3: Pearson’s linear correlation coefficient between each

selected variable from dataset 2 by EbFSA_v2.

Variable 1 2 1233 1234 1803 2187 2441

1 1 0.9863 0.0496 0.0399 0.2587 0.0527 0.0158

2 1 0.0233 0.0222 0.2847 0.0361 -0.0199

1233 1 0.9999 0.3932 0.8844 0.3644

1234 1 0.3912 0.8845 0.3666

1803 1 0.4360 -0.0736

2187 1 0.3060

2441 1

These are the most informative variables selected by EbFSA_v2 (Algorithm

4.6). As shown in Figure 6.6, variable 2 is the most independent one of the others.

However, Table 6.3 shows variable 2 is strongly correlated with variable 1 (ρ1,2 =

0.9863). Consequently, their presence in the model becomes indispensable to obtain a

more reduced RMSEP value since one is linearly dependent of the other.

Additionally, Figure 6.20 shows variables 1233 and 1234 are totally linearly

dependent (ρ1233,1234 = 0.9999). Indeed, as discussed earlier some neighbor variables tend

to be strictly correlated. Therefore, one can graphically observe they are closely linearly

spaced and both together contribute to reduce the model prediction error.
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Figure 6.20: Linear correlation analysis between variable 1233

and 1234 from dataset 2.

Finally, Figures 6.21 and 6.22 show us the RMSEP values during the variable

selection process from dataset 1 and dataset 2 obtained by EbFSA_v2, respectively:
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Figure 6.21: RMSEP values during variable selection from dataset

1 by EbFSA_v2.
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Figure 6.22: RMSEP values during variable selection from dataset

2 by EbFSA_v2.

One can notice the prediction error reduction as the variables are inserted into

the calibration model. However, it is important to note the values in the charts does

not necessarily match the final RMSEP value (see Table 6.2) because the prediction set

(Xpred) is used at the final evaluation while the validation set (Xval) is used during the

variable selection process. See Chapter 5 for more details.

6.5 Literature Comparison

Table 6.4 presents a comparison between our proposal and some different algo-

rithms from literature applied into dataset 1:
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Table 6.4: Outcomes comparison between different algorithms us-

ing dataset 1.

Algorithm RMSEP MAPE PRESS Num. of variables

PLS [85] 0.21 1.50% 10.09 15

SPA-MLR [85] 0.20 1.43% 9.95 13

BVS [85] 0.15 1.07% 6.96 29

FA-MLR [85] 0.09 0.8% 4.08 11

Standard GA 0.21 1.50% 10.86 146

GA-heuristic 0.10 2.20% 26.50 53

GA-heuristic with local search 0.08 2.20% 26.50 70

EbFSA_v1 0.06 1.46% 12.04 57

EbFSA_v2 0.07 1.58% 15.28 131

In Table 6.4, PLS means partial least squares which is the most classical tech-

nique for variable selection (Section 2.3.1). SPA-MLR is the successive projections al-

gorithm (Section 2.3.2). BVS is the Bayesian variable selection method, and FA-MLR is

the firefly algorithm adapted for variable selection. It is important to highlight that the

implementations of all such algorithms are published by the author in Paula et al. [85].

The outcomes in Table 6.4 reassure the use of the heuristic strategy in GA

(Algorithm 4.2) becomes important to reduce the model prediction error in terms of

RMSEP. For example, the RMSEP value obtained by GA-heuristic was considerably

smaller than standard GA. In addition, although increasing the number of selected

variables, the use of GA-heuristic with local search (Algorithm 4.4) provided an even

more reduced RMSEP value. Nevertheless, EbFSA_v1 selected the most informative

variables and provided the lowest RMSEP despite selecting a relatively large number

of variables 10.

Table 6.5 shows the same comparison using different algorithms applied into

dataset 2:

10It is noteworthy some scientists may prefer a reduced number of variables. In this case, the use of
Firefly Algorithm (FA-MLR [85]) would be a more suitable choice.
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Table 6.5: Outcomes comparison between different algorithms us-

ing dataset 2.

Algorithm RMSEP MAPE PRESS Num. of variables

Participant 1 (IDRC) [55] 0.0140 Not inf. 0.0071 Not inf.

Participant 2 (IDRC) [55] 0.0170 Not inf. 0.0104 Not inf.

Participant 3 (IDRC) [55] 0.0170 Not inf. 0.0104 Not inf.

Participant 4 (IDRC) [55] 0.0310 Not inf. 0.0345 Not inf.

IntGA-MLR [106] 0.0019 6.65% 0.0001 10

Standard GA 0.0291 3.32% 0.0304 68

GA-heuristic 0.0134 5.69% 0.0064 53

GA-heuristic with local search 0.0103 5.69% 0.0038 52

EbFSA_v1 0.0050 3.78% 0.0009 249

EbFSA_v2 0.0018 6.56% 0.0001 7

In Table 6.5, the participants represent four different methods used in the soft-

ware competition of the International Diffuse Reflectance Conference (IDRC) 2014 [55].

Information such as MAPE, PRESS and number of selected variables were not informed

by the conference 11. IntGA-MLR is a GA implementation based on integer representa-

tion. It is important to highlight that the IntGA-MLR is published by the author in Sousa

et al. [106].

With the overall best statistics Participant 3 won the software competition, but

our GA-heuristic and GA-heuristic with local search provided better outcomes. More-

over, IntGA-MLR was able to overcome our GA (with heuristic and local search) and

EbFSA_v1. However, EbFSA_v2 was superior to all other algorithms yielding the small-

est number of selected variables and the lowest RMSEP value. Such results demonstrate

our EbFSA_v2 selected the most informative variables from dataset 2 without decom-

posing the problem and avoiding schemata disruption. Consequently, it provided a model

with the highest predictive ability.

It is important to emphasize it is beyond the scope of this work to compare

differences of statistical significance and computational cost between the algorithms.

Finally, the computational times of referenced algorithms from Table 6.4 can be obtained

in Paula et al. [85].

11Then, we calculated PRESS information from the RMSEP values.
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6.6 Summary

This chapter presented and discussed all experimental results. Section 6.1 argued

about the non-decomposability assumption raised up and claimed by Hypothesis 1 (Sec-

tion 4.1.2). The obtained outcomes demonstrate considerable evidences that in fact the

variable selection procedure in multivariate calibration is usually a high dimensionality

problem and can not be properly decomposed due to multicollinearity. Figures 6.1 and

6.5 highlight the high level of correlation among the variables from dataset 1 and dataset

2, respectively. It is possible to notice in the charts a brighter region over the search space,

which certifies the constant presence of multicollinearity in the datasets.

Section 6.2 presented a schemata disruption analysis by using standard GA

implementation with and without the proposed heuristics. When using crossover operator,

it becomes clear the constant schemata disruption caused by such recombination operator.

Figure 6.8 highlights the trend in raising children worse than parents, while the number

of better individuals decrease over the generations. When the heuristics are applied, the

results are relatively improved. While one heuristic generates the best initial solutions,

the other one tries to identify possible schemata in the population. On the other hand, the

proposed local search-based operator is able to provide the best outcomes compared to

the heuristics approach. This is due to the fact that such local search operator is simple

and does not use recombination. Consequently, the schemata disruption tends to reduce.

Finally, Sections 6.3 and 6.4 described the main results obtained by the proposed

Epistasis-based FSA (versions 1 and 2, respectively). These algorithms do not use a

population of individuals. On the contrary, such deterministic approaches use only one

chromosome and initially select the most linearly independent variables based on the

Pearson’s linear correlation coefficients matrix, which is assumed as the epistatic relation

among variables. EbFSA does not decompose the problem by keeping correlated variables

together in the same subset. As a consequence, the schemata disruption is avoided. Thus,

EbFSA is able to select the most informative variables and provide the best outcomes

when compared with traditional methods from literature.



CHAPTER 7
Conclusions

Based on concepts of decomposability, a problem is said to be decomposable if

it is possible to break it into smaller subproblems. For this to happen, all variables making

up the problem should not interact with each other and they should be separately treated.

However, often in multivariate calibration there are considerable linear dependency

among decision variables from spectral data, and this issue indicates such problem can

not be properly decomposed. Thus, based on concepts of decomposability, this work

aimed to claim that selecting variables in multivariate calibration can be considered as a

non-completely decomposable problem due to the constant presence of multicollinearity

among variables, which states our first hypothesis.

It is known that recombination operators are able to cause building blocks dis-

ruption in GAs by splitting individuals chromosome to form offspring. Current literature

lacks a property analysis which consistently clarifies the BBs disruption in GAs. Dis-

rupted BBs are not preserved in new individuals and this leads the algorithm to yield poor

performance. In this context, based on schema theory, this work also aimed to claim that

not necessarily there exists building blocks formation in spectral data from multivariate

calibration due to the high data dimensionality. Even so, schemata disruption caused by

crossover operator in GAs affects the non-decomposability assumption of variable selec-

tion in multivariate calibration, which assumes our second hypothesis. It is important to

highlight that our deep research and experimental results provided significant evidences

about the both hypotheses feasibility.

Additionally, we proposed a GA implementation with two heuristics and one

simple local search operator. Such heuristics aimed to explore the research empiricism

and yielded viable results, but the local search operator was superior. Moreover, two

different versions of a novel approach for variable selection were proposed. It was

called Epistasis-based Feature Selection Algorithm (EbFSA). EbFSA was able to avoid

schemata disruption, select the most informative variables, provide the best outcomes and

overcome some state-of-the-art algorithms.
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7.1 Summary of Contributions

This doctorate thesis can be summarized based on its contributions such as:

• Proposal of Hypothesis 1:

– Comprehensive bibliographical review about concepts of decomposability;

– Development of Equation (4-2);

– Presentation of three numerical examples;

• Proposal of Hypothesis 2:

– Broad and deep research about schema theory;

– Use of Proposition 1 (Section 4.2.2);

– Presentation of three numerical examples;

• Standard GA implementation with two proposed heuristics:

– Heuristic for initial solutions generation;

– Heuristic for possible schemata identification;

• Proposal of a simple local search operator in the GA implementation:

– Strategy based on the Variable Neighborhood Search method [94];

– Better outcomes than standard GA and heuristics;

• Proposal of two different versions of a novel approach for variable selection in

multivariate calibration called Epistasis-based FSA:

– Better than local search operator;

– Superior to some traditional algorithms in terms of number of variables and

model predictive ability.

• Published and presented results (including submitted manuscripts):

– Results of Hypothesis 1 published and presented in the Genetic and Evolu-

tionary Computation Conference (GECCO) 2017 [83];

– Results of Hypothesis 2 published and presented in the GECCO 2016 [84];

– Results of an earlier version of this PhD thesis published in the Doctoral

Symposium of the EPIA Conference on Artificial Intelligence 2017 [76];

– Results of Epistasis-based FSA submitted to a relevant scientific journal.

All details about the published and elaborated works as well as those accepted

for publication during the course of this thesis are listed below. The lists of items are listed

in ascending order of year of publication.
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7.1.1 Published papers

1. Feature Selection using Genetic Algorithm: An Analysis of the Bias-Property for

One-Point Crossover. In: Proceedings of the 2016 on Genetic and Evolutionary

Computation Conference (Qualis A1), Denver - GECCO ’16 Companion. New

York: ACM Press, 2016. p. 1461-1462 [78].

2. Variable Selection for Multivariate Calibration in Chemometrics: A Real-World

Application with Building Blocks Disruption Problem. In: Proceedings of the

2016 on Genetic and Evolutionary Computation Conference (Qualis A1), Denver -

GECCO ’16 Companion. New York: ACM Press. p. 1031-1034 [84].

3. Variable Selection as a Non-Completely Decomposable Problem: A Case Study

in Multivariate Calibration. In: 2017 on Genetic and Evolutionary Computation

Conference (Qualis A1), Berlin - GECCO ’17 Companion. New York: ACM Press.

p. 1399-1402 [83].

4. Variable Selection in Multivariate Calibration considering Non-Decomposability

Assumption and Building Blocks Hypothesis. In: Doctoral Symposium of the

18th EPIA Conference on Artificial Intelligence (Qualis B2), Porto - Portugal.

Proceedings of EPIA 2017. p. 44-55 [76].

7.1.2 Main published related papers

1. A GPU-Based Implementation of the Firefly Algorithm for Variable Selection

in Multivariate Calibration Problems. Plos One (Qualis A1), v. 9, p. e114145,

2014 [85].

2. Multiobjective Firefly Algorithm for Variable Selection in Multivariate Calibration.

In: Lecture Notes in Computer Science (Qualis B2), v. 9273, p. 274-279, 2015 [82].

3. A Metaheuristic Implementation for Variable Selection in Multivariate Calibration

Models. In: 11th Metaheuristics International Conference (Qualis B3), Agadir.

Proceedings of MIC 2015 [81].

4. Parallel regressions for variable selection using GPU. Computing - Springer

(Qualis B1), v. 98, p. 1-16, 2016 [79].

5. A Compact Firefly Algorithm for the Variable Selection Problem in Pharmaceutical

Ingredient Determination. In: 2016 IEEE Congress on Evolutionary Computation

(Qualis A1), Vancouver. Proceedings of IEEE CEC, 2016. p. 3832-3838 [77].

6. Modern Metaheuristic with Multi-Objective Formulation for the Variable Selection

Problem. Journal of Computer Science (Qualis B1), v. 13, p. 659-666, 2017 [80].

7. Integer-based Genetic Algorithm for Feature Selection in Multivariate Calibration.

In: 2017 IEEE Congress on Evolutionary Computation (Qualis A1), San Sebastian,

Spain. Proceedings of IEEE CEC, 2017. p. 2315-2320 [106].
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7.1.3 Manuscripts in peer review process

1. Epistasis-based FSA: Two Versions of A Novel Approach for Variable Selection

in Multivariate Calibration. Submitted in: Engineering Applications of Artificial

Intelligence (Qualis A2).

7.1.4 Manuscripts in written process

1. Genetic Algorithm: A Poor Technique for Variable Selection in Multivariate Cali-

bration. To be submitted in: Analytica Chimica Acta (Qualis A1).

7.1.5 Main awards

1. 2014 - Second place in the Contests of Thesis and Dissertations in Computer

Architecture and High Performance Computing (WSCAD-CTD 2014), promoted

by the Brazilian Society of Computing [75].

2. 2015 - Recognition certificate from University Council (CONSUNI) of the Federal

University of Goiás, Brazil.

3. 2017 - Grant of USD 700.00 from the Association for Computing Machinery

(ACM) for participation and paper presentation at the Genetic and Evolutionary

Computation Conference (GECCO) 2017, in Berlin [83].

7.1.6 Countries where author presented scientific papers

1. Morocco - Metaheuristic International Conference 2015 [81].

2. USA - Genetic and Evolutionary Computation Conference 2016 [84].

3. Canada - IEEE Congress on Evolutionary Computation 2016 [77].

4. Germany - Genetic and Evolutionary Computation Conference 2017 [83].
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7.2 Limitations of Our Proposal

We consider our both hypotheses and all algorithms proposed in this work

are useful. However, they suffer from some limitations when considering more general

applications. Such limitations are now discussed.

In the context of this work, it is considered only the binary-coded Genetic

Algorithm. This unique representation narrows the applicability of both hypotheses.

Thus, Hypothesis 1 and Hypothesis 2 can not be generalized. They lack some theorem

to be general justified. A possible solution for this issue could be the proposal of one

theorem together with a mathematical proof in order to demonstrate they can be applied

to other optimization problems with high data dimensionality as well as to other types of

representation.

Another limitation concerns the proposed local search operator. Although our

local search operator is able to provide viable outcomes, it was implemented on a simple

manner. It is based on the Variable Neighborhood Search method [94]. We believe it can

be further improved by applying a more efficient strategy. Consequently, better results

may be achieved.

The Epistasis-based Feature Selection Algorithm (EbFSA) uses the concept of

epistasis considering the Pearson’s linear correlation coefficient as the epistatic relation

among the variables in the dataset. Nevertheless, it is not improved by mixing concepts

from other theories. For example, we consider the use of Linkage Learning (Section 3.5.2)

may provide additional information about genes (variables) interdependence. Moreover,

the use of Mutation-based Compact Genetic Algorithm [101] may perform a more

significant exploitation and exploration in the search space, possibly yielding even better

outcomes.

EbFSA_v1 was superior to EbFSA_v2 regarding dataset 1, and EbFSA_v2

overcomed EbFSA_v1 regarding dataset 2. We presume the strategy used by EbFSA_v2

tends to be better when applied in even larger datasets with high data dimensionality.

This may happen because EbFSA_v2 selects and maintains in the calibration model the

most informative variables on an individually manner. On the other hand, the second

stage of EbFSA_v1 discards two correlated variables previously selected if the prediction

error is not reduced. Then, one of the two variables may be relevant together with other

variables but it is discarded anyway. However, the use of additional datasets and a deeper

investigation become necessary to demonstrate such assumption.

Finally, we suggest future work in the next section which could be carried out

to address these limitations and discuss some potential improvements to our proposed

hypotheses and algorithms.
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7.3 Future Work

For future work, we aim to propose at least one theorem to formally demon-

strate the variable selection procedure in multivariate calibration is a non-decomposable

problem (Hypothesis 1) as well as the schemata disruption caused by crossover operators

affects the non-decomposability assumption (Hypothesis 2). The use of some theorem

with mathematical proof could be an important manner to prove that indeed recombina-

tion operators are an infeasible technique for variable selection in multivariate calibration

models as well as for other optimization problems with high data dimensionality.

We have an additional hypothesis (maybe called Hypothesis 3) which assumes

that spectral regions reliably representing the property of interest in the analyzed sample

can be set in blocks of variables. Section 3.4.3 tried to point out this possible assumption.

Such blocks could be considered as independent blocks or correlated blocks. In this case,

we aim to use some additional linear correlation measure to assess spectral orthogonality

among variables in order to demonstrate the possible existence of such blocks in the

spectral regions. Another possible alternative could be the use of concepts and tools

from analytical chemistry to measure chemical interdependence between two or more

wavelengths absorbed by molecules in the sample.

We also aim to propose an enhanced Epistasis-based FSA (EbFSA) in order to

reduce the number of selected variables without incurring loss of performance in terms

of model prediction error. In this sense, multi-objective optimization problems may be

tackled accordingly. Moreover, EbFSA may be adapted and applied to solve classification

problems. Therefore, the two versions of EbFSA can be assessed in order to verify which

one is the best in such context, and a suitable comparison between classical algorithms

could be performed.

Finally, Genetic Algorithms (GAs) coded with other types of representation may

be investigated inside the context of the second hypothesis. For instance, the integer-based

GA (IntGA-MLR [106]) may be analyzed in order to verify if there is the possibility of

schemata (or building blocks) formation (even without binary codification) as well as if

schemata can be disrupted in such representation.
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