UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL FACULDADE DE MEDICINA VETERINÁRIA E ZOOTECNIA PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS VETERINÁRIAS CURSO DE MESTRADO

CONTAGEM DE OVOS NAS FEZES *versus* RESPOSTA IMUNE: RELAÇÃO OU ILUSÃO?

MARCELA SANTOS SENA MARTINS

CAMPO GRANDE, MS 2018

UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL FACULDADE DE MEDICINA VETERINÁRIA E ZOOTECNIA PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS VETERINÁRIAS CURSO DE MESTRADO

CONTAGEM DE OVOS NAS FEZES *versus* RESPOSTA IMUNE: RELAÇÃO OU ILUSÃO?

Egg count in the feces versus immune response: relation or illusion?

Marcela Santos Sena Martins
Orientador: Prof. Dr. Fernando Paiva

Dissertação apresentada ao Programa de Pós-Graduação em Ciências Veterinárias como requisito à obtenção do título de Mestre em Ciências Veterinárias.

CAMPO GRANDE, MS 2018

MARCELA SANTOS SENA MARTINS

CONTAGEM DE OVOS NAS FEZES *versus* RESPOSTA IMUNE: RELAÇÃO OU ILUSÃO?

Dissertação de Mestrado apresentada à Universidade Federal de Mato Grosso do Sul, como parte das exigências do Programa de Pós-Graduação em Ciências Veterinárias, para obtenção do título de Mestre em Ciências Veterinárias.

Aprovado em ___/__/2018.

COMISSÃO EXAMINADORA

Prof. Dr. Fernando Paiva Universidade Federal de Mato Grosso do Sul Orientador

Prof. Dr. Fernando de Almeida Borges Universidade Federal de Mato Grosso do Sul

Dr. Claudio Roberto Madruga Pesquisador Aposentado Embrapa Gado de Corte

AGRADECIMENTOS

À Parasitologia, motivo pelo qual estou aqui e continuarei buscando conhecimento.

Ao meu orientador, Professor Dr. Fernando Paiva, pela oportunidade de trabalho e dedicação ao nosso trabalho.

Aos meus pais, Célio e Angelita, por serem os motivadores e financiadores de toda essa conquista, em especial à minha mãe, que nos momentos mais difíceis não me deixou desanimar, e que sempre me instigou a repetir o mantra "respeito e educação". Mãe, sem você eu não teria conseguido.

À minha irmã, Ana Luísa, pelos incentivos, companheirismo e compreensão nos momentos de ausência.

À família Fontoura Mateus. Tia Marina e Tio Juarez, obrigada por se tornarem a minha família Campo Grandense. E em especial a minha amiga Nathália Fontoura, que se tornou uma irmã. Obrigada por me tirar do tédio, pelos atendimentos a domicílio, pelos perrengues e por muitas alegrias durante esses dois anos. Você é exemplo de dedicação e profissionalismo para mim.

A todas as pessoas que eu conheci em Campo Grande, em especial Dona Angélica e Cristina Kikuti, obrigada por vocês serem meus anjos aqui.

Aos proprietários e colaboradores das Fazendas Bodoquena e São Bento, pela disponibilidade e assistência durante as coletas.

À Alíria Aristides, Eduardo Rossignolo e Thiago Gonsalo saibam que vocês foram essenciais durante as coletas e processamento das amostras, muito obrigada. Fizeram das nossas idas ao Pantanal e do trabalho árduo muito mais suave e prazeroso.

Aos amigos do Laboratório de Parasitologia Animal InBio/UFMS, Átila Gomes, Bianca Courbassier, Camyle Maruyama, Felipe Bisaggio, Isabela Caroline, Josiane Theodoro, Lenon Malta, Luciano Negreiros, Luiz Eduardo Tavares, Nathália Rebello, Priscilla Soares e Vagner Fiuza. Obrigada a todos pela ajuda durante as coletas, nas atividades laboratoriais, nos ensinamentos parasitológicos e principalmente pelo apoio emocional e experiências vividas nesse período, foi um prazer partilhar de todos esses momentos com vocês.

À professora Dra. Inês Tozetti e toda equipe do Laboratório de Imunologia InBio/UFMS, obrigada pelas contribuições e ensinamentos transmitidos nessa

jornada e por me acolheram de forma tão carinhosa. Vocês foram indispensáveis para que o ELISA fosse efetuado e este trabalho concluído.

Aos funcionários da Famez/UFMS, por todo auxílio durante o manejo com os bezerros Gabiru e Neguinho.

À Letícia Albertti do Laboratório de Evolução e Biodiversidade/InBio/UFMS pelo auxílio com o NanoDrop.

À Amanda do Laboratório de Produtos Naturais e Espectrometria de Massas InBio/ UFMS pela disponibilidade durante o processo de liofilização.

À Lana Heemann, Kamylla Souza, Camila e Giovana do Laboratório de Biologia Molecular InBio/UFMS pela ajuda e disponibilidade durante a leitura dos ELISAs.

À Isabella Martins, minha primeira orientadora e amiga, que continua sendo fonte de inspiração e humildade.

Às amigas, Alda Lanna, Bianca Louvain, Gabriela Cândido, Julia Terra e Layara Pestana, que mesmo distantes, fizeram muita diferença com muito apoio pessoal em momentos difíceis.

Ao Programa de Pós-Graduação em Ciências Veterinárias da Universidade Federal de Mato Grosso do Sul e aos professores pelos ensinamentos e dedicação.

À CAPES e UFMS pelo incentivo financeiro das minhas pesquisas e bolsas.

À instituição UFMS por me proporcionar essa experiência.

A todos que contribuíram direta ou indiretamente para a realização desse trabalho, minha gratidão.

RESUMO

MARTINS, M.S.S. CONTAGEM DE OVOS NAS FEZES *versus* RESPOSTA IMUNE: RELAÇÃO OU ILUSÃO? 2018. 59p. Dissertação de Mestrado – Faculdade de Medicina Veterinária e Zootecnia, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, 2018.

A dinâmica da infecção por nematodas gastroinstestinais em bovinos de corte naturalmente infectados foi analisada por meio da contagem de ovos por grama de fezes (OPG) e correlacionada com a quantificação de IgG total sérico frente a antígenos totais de Haemonchus placei e Oesophagostomum radiatum. Foram amostrados 1147 animais das raças Nelore e de cruzamento industrial (Brangus x Nelore), em duas fazendas comerciais de Mato Grosso do Sul, Brasil, distribuídos em cerca de 200-300 animais por categoria etária: pré-desmame, desmamados, sobreanos e adultos. O OPG foi processado individualmente, por amostra. Para produção dos antígenos totais (AT) das espécies de nematodas, procedeu-se a indução de infecção experimental com cultura mista em um bezerro, para recuperação de espécimes adultos. A quantificação de IgG total se deu por meio da técnica de imunoadsorção enzimática (ELISA), sendo os resultados relacionados ao OPG. Considerando as médias de OPG, essas não diferiram estatisticamente (p>0,05) entre as categorias sobreanos (57,72 ± 115,49 [0-850]) e adultos (39,54 ± 67,52 [0-550]), entretanto, ambas as categorias diferiram de pré-desmame (372,91 ± 436,50 [0- 2950]) e desmamados (222,19 ± 323,13 [0- 1700]), as quais também diferiram entre si (p<0,05). Para as reações sorológicas, 369 amostras de soros dos animais que apresentaram alto e baixo OPG foram selecionadas. Analisando as médias das densidades ópticas (D.O) frente ao antígeno total de H. placei, não foi possível evidenciar uma correlação (Pearson; p=0,907) entre o OPG e quantificação de IgG total, também não houve diferença estatística entre as categorias prédesmame, desmamados e adultos (p>0,05), apenas a categoria sobreanos (p<0,05) apresentou média estatisticamente superior às demais, assim, como também não houve diferença significativa entre OPG alto e baixo para quantificação de IgG (p>0,05). Ao contrário do que foi observado para H. placei, houve correlação negativa (Pearson; p=0,001; r= - 0,178) entre o OPG e quantificação de IgG total para antígeno total de O. radiatum. As médias das D.O do antígeno de O. radiatum não diferiram entre as categorias pré-desmame e desmamados (p>0,05), mas estas diferiram das categorias sobreanos e adultos (p<0,05), sendo que estas últimas apresentaram maiores médias e não diferiram entre si, houve diferença significativa (p<0,05) entre OPG e quantificação de IgG total, evidenciando maiores médias de IgG nas amostras de soro que apresentaram um baixo OPG. Observou-se redução gradativa nas contagens de OPG de acordo com o aumento na idade dos animais, indicando que a imunidade adquirida está consolidada em torno de 18 a 24 meses de idade. Mas com base nos resultados sorológicos, a relação entre o OPG e a quantificação de IgG total no soro de bovinos naturalmente infectados pode não ser direta.

Palavras-chave: Bovino de Corte. *Haemonchus*. Parasitos. *Oesophagostomum*. OPG.

ABSTRACT

MARTINS, M.S.S. **EGG COUNT IN THE FECES** *versus* **IMMUNE RESPONSE**: **RELATION OR ILLUSION?** 2018. 59p. Dissertação de Mestrado – Faculdade de Medicina Veterinária e Zootecnia, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, 2018.

The dynamics of gastrointestinal nematode infection in naturally infected beef cattle was evaluated using faecal egg count (EPG), as well as correlated with the total amount of serum IgG against overall antigens of Haemonchus placei and Oesophagostomum radiatum. A total of 1147 Nelore and industrial crossbred (Brangus x Nelore) animals, from two commercial farms in the State of Mato Grosso do Sul, Brazil, were sampled and divided into categories with 200-300 animals each namely, pre-weaning, weaned, yearling and adults. The EPG was performed individually, for each sampled animal. For obtainment of the total antigens (TA) of each parasite species, an experimental infection with mixed culture of nematode L3 larvae was induced in a calf, in order to recover adult specimens. Enzyme linked immunosorbent assay (ELISA) was used to quantify the overall IgG in the serum, and these results were tested against those of EPG to scrutiny possible correlations. The mean values of EPG within yearling (57,72 ± 115,49 [0- 850]) and adults (39,54 ± 67,52 [0-550]) were not statistically different (p>0,05), but both differed from those of pre-weaning $(372,91 \pm 436,50 [0-2950])$ and weaned $(222,19 \pm 323,13 [0-1700])$, which in turn differed from each other (p<0,05). Three hundred and sixty nine serum samples were selected for serological analyses from the animals with high and low EPG egg counts. The optical densities (OD) of the IgG against the total antigens of H. placei, showed no correlation (Pearson; p=0.907) with the overall EPG. Furthermore, the OD of IgG against H. placei antigens was similar among all the categories (p>0.05), except by the yearling (p<0.05) that had statistically higher mean than the others. Animals with high and low EPG showed no differences in the OD of IgG against H. placei antigens as well (p>0.05). Conversely, there was a negative correlation (Pearson, p=0.001; r=-0.178) between EPG and the total IgG quantification against O. radiatum overall antigens. The mean OD of the IgG against O. radiatum antigen was similar between the pre-weaning and weaned categories (p>0.05), but both differed from those values exhibited by yearlings and adults

ix

(p<0.05). Moreover, when comparing the mean IgG OD against *O. radiatum* antigen between animals with high and low EPG, was possible to observe statistic differences, in which those with low EPG exhibited high mean IgG OD. EPG counts were inversely proportional to the increase in age of the animals, indicating that the acquired immunity is guaranteed after 18 to 24 months of life. However, based on the serological results, the relationship between EPG and total serum IgG in naturally infected cattle may be not directly related.

Keywords: Beef Cattle. Parasites. EPG. Haemonchus. Oesophagostomum.

LISTA DE TABELAS

Tabela		Página
Tabela 1 -	Média, desvio padrão, amplitude e mediana das contagens de ovos por grama de fezes (OPG) em diferentes categorias de bovinos naturalmente infectados por nematodas gastrintestinais, em duas propriedades comerciais de Mato Grosso do Sul, Brasil, no período de 2016-2017.	32
Tabela 2 -	Média, desvio padrão e amplitude das Densidades Ópticas, obtidas pela técnica de ELISA empregando IgG total sobre antígenos totais de <i>Haemonchus placei</i> e <i>Oesophagostomum radiatum</i> , em reações com amostras de soros de bovinos de corte, naturalmente infectados por nematodas gastrintestinais, distribuídos em diferentes categorias etárias (pré-desmame, desmamados, sobreanos e adultos), em duas propriedades comerciais em Mato Grosso do Sul, Brasil, no período 2016-2017.	37
Tabela 3 -	Média, desvio padrão e amplitude das Densidades Ópticas, obtidas pela técnica de ELISA empregando IgG total sobre antígenos totais de <i>Haemonchus placei</i> e <i>Oesophagostomum radiatum</i> , em reações com amostras de soro de bovinos de corte, naturalmente infectados por nematodas gastrintestinais, distribuídos em diferentes categorias etárias (pré-desmame, desmamados, sobreanos e adultos) e classificados em função da contagem do OPG (alto x baixo), em duas propriedades comerciais em Mato Grosso do Sul, Brasil, no período	42
	2016-2017.	

LISTA DE FIGURAS

Figura		Página
Figura 1 -	Distribuição das frequências relativas nas contagens de ovos por grama de fezes (OPG), por categoria (prédesmama, desmamados, sobreano e adulto), descriminando as classes calculadas pelo método de Sturges (1926) em bovinos de corte, naturalmente infectados por nematodas gastrintestinais, em duas propriedades comerciais de Mato Grosso do Sul, Brasil, no período 2016-2017.	33
Figura 2 -	Percentuais de larvas de gêneros de helmintos recuperadas nas coproculturas, para cada categoria de bovinos naturalmente infectados por nematodas gastrintestinais, em duas propriedades comerciais de Mato Grosso do Sul, Brasil, no período 2016-2017.	34
Figura 3 -	Gráfico Box Plot com distribuição das médias e desvio padrão das densidades ópticas (D.O) para antígenos totais de <i>Haemonchus placei</i> em soros de bovinos de corte, para diferentes categorias etárias (pré-desmame, desmamados, sobreanos e adultos), naturalmente infectados por nematodas gastrintestinais, em duas propriedades comerciais em Mato Grosso do Sul, Brasil, no período 2016-2017.	35
Figura 4 -	Gráfico Box Plot com distribuição das médias e desvio padrão das densidades ópticas (D.O) para antígenos totais de <i>Oesophagostomum radiatum</i> em soros de bovinos de corte, para diferentes categorias etárias (pré-desmame, desmamados, sobreanos e adultos), naturalmente infectados por nematodas gastrintestinais, em duas propriedades comerciais em Mato Grosso do Sul, Brasil, no período 2016-2017.	36
Figura 5 -	Índice de reatividade (I.R.) calculado para amostras de soros de bovinos de corte à antígeno total de <i>Haemonchus placei</i> , distribuídos em diferentes categorias etárias (prédesmame, desmamados, sobreanos e adultos), naturalmente infectados por nematodas gastrintestinais, em duas propriedades comerciais em Mato Grosso do Sul, Brasil, no período 2016-2017.	39
Figura 6 -	Índice de reatividade (I.R.) calculado para amostras de soros de bovinos de corte à antígeno total de <i>Oesophagostomum radiatum</i> , distribuídos em diferentes categorias etárias (pré-desmame, desmamados, sobreanos e adultos), naturalmente infectados por nematodas gastrintestinais, em duas propriedades comerciais em Mato Grosso do Sul, Brasil, no período	41
	2016-2017	71

SUMÁRIO

					Páç	gina
1 INTE	ODUÇÃO				1	3
2 OBJ	ETIVOS				1	4
2.1- Ol	ojetivo Geral				1	4
2.2- Ol	ojetivos especi	íficos			1	4
3 REV	ISÃO DE LITE	RATURA	١		1	5
3.1-	Infecção	por	nematodas	gastrintestinais	em	
bovino	S				1	5
3.2- Re	elação parasito	o-hospede	eiro e suas relaçõ	ies com o sistema im	une 1	8
3.2.1-	Resposta Imur	nológica a	os helmintos		1	9
3.2.1.1	- Resposta Ce	elular fren	te aos helmintos.		2	20
3.2.1.2	:- Resposta Hu	ımoral fre	nte aos helmintos	S	2	22
3.3- Té	écnica Imunoe	nzimática			2	24
4 MAT	ERIAL E MÉT	ODOS			2	25
4.1- Pr	otocolo experi	mental			2	25
4.1.1-	Área de Estud	o e Anima	ais experimentais		2	26
4.1.2-	Amostras Biolo	ógicas			2	26
4.1.3-	Contagem de	ovos por	grama de fezes (OPG) e seleção dos	soros	
para re	eações imunoe	enzimática	as		2	26
4.1.4-	Coproculturas.				2	27
4.1.5-	Indução de info	ecção			2	27
4.1.6-	Obtenção de <i>P</i>	Antígenos	Totais (AT)		2	28
4.1.7-	Identificação d	os espéci	mes adultos		2	<u> 2</u> 9
4.1.8-	Técnica de imi	unoadsor	ção enzimática (E	ELISA)	2	<u> 2</u> 9
4.2- Ar	nálise estatístic	ca			3	80
4.3- As	spectos Éticos				3	31
5 RES	ULTADOS E I	DISCUSS	ÃO		3	31
6 CON	CLUSÕES				4	14
7 REF	ERÊNCIAS				4	14
8 ANE	YOS				5	52

1 INTRODUÇÃO

As infecções por nematodas desempenham um papel importante na sanidade dos animais, sendo reconhecidas como um dos fatores de maior impacto econômico na atividade produtiva, em escala mundial. Os custos com a profilaxia antihelmíntica, bem como os efeitos das infecções subclínicas, levam a considerar as helmintoses como um dos maiores entraves para o sistema de produção animal (CHARLIER et al., 2009; MORGAN, 2013). O controle desses parasitos é feito, prática e exclusivamente, com o uso de produtos químicos e quando usados de forma incorreta podem deixar resíduos na carne (BIANCHIN; CATTO, 2009).

Entretanto, apesar do significativo número de artigos publicados sobre esses parasitos, ainda assim, existem carências nos campos de estudo relacionados aos parasitos de bovinos, especialmente, sobre a relação parasito-hospedeiro, resposta imune humoral e celular e menos ainda sobre os antígenos dos agentes parasitários.

Um aspecto a ser considerado, é que os bovinos criados a campo e expostos a infecções naturais apresentam resposta imune e imunidade adquirida contra os nematodas gastrintestinais a partir do 2-3 anos de vida. Esta imunidade é parcial, de desenvolvimento lento e com muita variabilidade individual e racial (JASMER; MCGUIRE, 1996).

Para tanto, a caracterização da dinâmica da resposta imune humoral e identificação dos antígenos relacionáveis à redução na infecção dos animais, pode contribuir para adoção de medidas de controle mais eficientes, bem como para o desenvolvimento de vacinas (ANTHONY et al., 2007), contribuindo assim para a antecipação do *status* imunológico.

De acordo com Gill et al. (1993), ovinos com 18 meses de idade, geneticamente resistentes a *Haemonchus contortus*, apresentam concentração de IgG1 duas a quatro vezes maior que animais não resistentes. Existe uma correlação negativa entre as contagens de OPG e os níveis de IgG1, sugerindo que esses anticorpos são diretamente responsáveis pela inibição do desenvolvimento das larvas e participam indiretamente na expulsão dos helmintos adultos. Nishi et al. (2002), estudando a resposta imune de bezerros infectados experimentalmente, detectaram a produção ascendente de IgG nesses animais e consideraram que a

presença de anticorpos da classe IgG permite a obtenção de informações sobre a dinâmica da resposta imune em condições experimentais.

Porém, um empecilho para o desenvolvimento de uma vacina eficaz é a falta de compreensão dos componentes reais da resposta imune que medeiam a proteção contra helmintos. Devido a esse fator, estudos tornam-se necessários para a compreensão da biologia e da influência da resposta imunológica do animal na relação parasito-hospedeiro (ANTHONY et al., 2007).

O reduzido número de trabalhos científicos com temática relativa à imunidade, relação parasito-hospedeiro relacionado aos bovinos; assim como também a demanda por novas alternativas de controle de nematodas, ensejou o delineamento do presente estudo. O objetivo foi mensurar a dinâmica da resposta imune humoral por meio da quantificação de IgG total específica, no soro em diferentes categorias etárias e relacionáveis à condição de parasitismo em bovinos de corte naturalmente infectados; empregando antígenos totais de duas espécies de nematodas gastrintestinais prevalentes na região.

2 OBJETIVOS

2.1 Objetivo geral

Avaliar a dinâmica da infecção por nematodas gastrintestinais e mensurar a resposta imune humoral por IgG total, frente à antígenos totais (AT) de duas espécies de nematodas parasitos gastrintestinais (*Haemonchus placei* e *Oesophagostomum radiatum*) em bovinos de corte, em diferentes categorias etárias.

2.2 Objetivos específicos

- Diagnosticar a infecção por nematodas gastrintestinais por meio da contagem de ovos por grama de fezes (OPG) em gado de corte, em diferentes categorias etárias, distribuindo-os em classes de frequências;
- Realizar ensaios de imunoadsorção enzimática (ELISA) empregando os soros dos animais, nas classes de contagem de OPG (alta e baixa), usando os AT de espécimes adultos de *H. placei* e *O. radiatum*;

 Analisar comparativamente os resultados das reações imunológicas com aqueles das contagens de OPG.

3 REVISÃO DE LITERATURA

3.1 Infecção por nematodas gastrintestinais em bovinos no Brasil

Uma das principais ações patogênicas dos nematodas gastrintestinais em bovinos é a diminuição do apetite e redução na taxa de conversão dos alimentos, provocados por alterações nas funções do trato digestivo com consequente redução no crescimento. De acordo com Costa et al. (1979), principalmente os nematodas da superfamília Trichostrongyloidea são comuns e patogênicos para ruminantes a pasto, principalmente em regiões de clima quente e úmido. O abomaso e o intestino delgado são os principais sítios de infecção nesses hospedeiros. O ciclo evolutivo é direto, com uma fase de vida parasitária, período de desenvolvimento no hospedeiro, e uma fase de vida livre, onde o parasito se encontra no ambiente. A eclosão dos ovos e o desenvolvimento das larvas são mediadas por vários fatores, tais como: umidade, temperatura e pela própria larva, que por meio de enzimas, digere a membrana interna permeável dos ovos. Algumas espécies de nematodas apresentam patogenicidade reduzida, enquanto outras podem causar óbito de animais, antes mesmo que os primeiros sinais clínicos sejam observados (ANDERSON; BREMMNER; HAMMERBEG, 1986; TORRES et al., 2009).

Atualmente na pecuária do Brasil Central há predomínio da criação de bovinos de corte. Nesta área, que abrange a maior parte do país, a verminose gastrintestinal raramente é vista como causadora de surtos com sinais clínicos ou como responsável por elevados índices de mortalidade animal. No entanto, estimase que em uma base anual, considerando o número da população de animais em risco e sob os efeitos negativos do parasitismo por nematodas gastrintestinais sobre a produtividade do gado que as perdas econômicas causadas podem corresponder a \$7,11 bilhões de dólares (GRISI et al., 2014). Desta forma, a produtividade pode ser a principal ferramenta de monitoramento da verminose gastrointestinal, sendo o ganho de peso e a contagem de ovos por grama de fezes os critérios de avaliação mais utilizados (GRISI et al., 2014; HECKLER, 2015).

Em estudo realizado por Catto e Ueno (1981) numa propriedade localizada no Pantanal Sul-Mato-Grossense, das 45 necropsias realizadas em bezerros de um a 24 meses de idade, foram encontradas as seguintes espécies de parasitos: Haemonchus similis; H. contortus; Cooperia punctata; C. pectinata; Trichostrongylus longispiculanis; Neoascaris vitulorum; Strongyloides papilosus; Bunostomum phlebotomum; Oesophagostomum radiatum e Trichuris discolor. Sendo que, dos totais de Haemonchus spp. e Cooperia spp. adultos recuperados; 95,3% e 87%, foram identificados como H. similis e C. punctata, respectivamente.

Quase 10 anos depois, outros resultados reportados por Bianchin et al. (1990) e Bianchin (1991) sobre epidemiologia de nematodas em bovinos de corte no estado de Mato Grosso do Sul, em necropsias mensais de animais permanentes e traçadores, demonstraram que, do total de helmintos encontrados, 75,8% foram Cooperia spp. (C. punctata 92%, C. pectinata 6% e C. spatulata 2%); 14,4% Haemonchus spp.; 6,8% T. axei; 2,6% O. radiatum; 0,3% T. discolor, 0,1% T. longispicularis. Os autores observaram ainda infecções esporádicas por B. phlebotomum e que D. viviparus ocorreu em níveis baixos durante todo o ano.

A literatura relativa ao parasitismo por nematodas gastrintestinais em bovinos, em idade de abate é bastante escassa, pois a maioria das publicações disserta sobre o parasitismo em bovinos com idade inferior a um ano. No entanto, Bresciani et al. (2001) realizaram um estudo, no estado de São Paulo, sobre helmintos gastrintestinais em bovinos em idade de abate (entre 24 e 30 meses de vida) e encontraram os gêneros *Cooperia*, *Haemonchus* e *Oesophagostomum*. As espécies identificadas foram: *C. punctata*, *C. pectinata*, *H. similis*, *H. placei* e *O. radiatum*.

Nos estudos anteriores, a prevalência de nematodas gastrintestinais em bovinos está representada principalmente por parasitos do gênero *Cooperia* seguido de *Haemonchus*. Entretanto, estudos recentes mostraram que a epidemiologia desses nematodas apresenta indicativo de alterações. De maneira geral, as espécies mais prevalentes e com maior intensidade de infecção que parasitam bovinos no Brasil, pertencem aos gêneros *Haemonchus* e *Cooperia* (SANTOS et al., 2010). Todavia, é importante ressaltar que outros gêneros, menos prevalentes, como, *Trichostrongylus* e *Oesophagostomum*, também podem ser detectados em diversas regiões do Brasil.

Em recente estudo no estado de Mato Grosso do Sul, utilizando bezerros de 8 a 10 meses de idade, Heckler (2015) relatou maior porcentagem média de larvas,

em coproculturas, pertencentes aos seguintes gêneros listados em ordem decrescente: *Haemonchus*, *Cooperia*, *Oesophagostomum* e *Trichostrongylus*. Dados semelhantes a esses também foram relatados por Oliveira et al. (2009) em bovinos de corte no estado de São Paulo; por Torres et al. (2009) em bovinos mestiços no Distrito Federal e por Fachiolli et al. (2017) em bezerros da raça Nelore, no estado de São Paulo. Bricarello et al. (2007) realizaram necropsia em 20 bovinos da raça Nelore e observaram que os nematodas *C. punctata* e *H. placei* foram predominantes.

Estudos realizados em regiões tropicais indicam que existe uma correlação significativa entre os valores observados nas contagens de ovos por grama de fezes (OPG) e o número total desses parasitos em hospedeiros adultos, permitindo estimar a intensidade parasitária (BRYAN; KERR, 1989; OLIVEIRA et al., 2009).

A raça bovina mais utilizada e predominante no Brasil Central é a Nelore (*Bos indicus*) (HECKLER, 2015), pois apresenta elevada rusticidade e capacidade de adaptação ao clima tropical e maior resistência natural contra os nematodas gastrintestinais, quando comparada com raças européias (*Bos taurus*) (PASSAFARO et al., 2015). Na região do Pantanal Sul-Mato-Grossense a concentração dos nascimentos no início da estação chuvosa e o desmame no final da mesma ou no início do período seco, contribui para que os bovinos de corte criados nessas condições estejam sujeitos às infecções praticamente durante todo o período de amamentação (CATTO; UENO, 1981).

Tongson e Balediata (1972) verificaram que infecções helmínticas eram particularmente incidentes em animais com até 24 meses de idade, sendo a idade um fator determinante na prevalência de helmintos em bovinos. A relação intrínseca entre a intensidade do parasitismo e a faixa etária dos hospedeiros é um dado epidemiológico crucial em um programa de controle das verminoses gastrintestinais, visto que as infecções helmínticas são particularmente incidentes e prevalentes em animais com até 24 meses de idade (ROBERTS; O'SULLIVAN; RIEK, 1952; TONGSON; BALEDIATA, 1972; COSTA et al., 1979; JASMER; MCGUIRE, 1996).

Melo (1977), Bianchin et al. (1995, 2007) e Catto et al. (2009), relataram que os animais adquirem imunidade um pouco mais cedo, em torno dos 18 meses de idade, observando que o OPG tende a diminuir nos animais à medida que se tornam adultos. Assim, a partir dessa faixa etária, a tendência é de redução na carga

parasitária, diminuição no número de ovos eliminados nas fezes e baixa incidência de casos clínicos de verminose, o que se pode constatar nos valores de OPG.

Na maioria das vezes, a forma mais simples para identificar um sistema de controle eficiente é pelo lucro líquido obtido pelo produtor, e não a quantidade de vermes eliminados (BOWMAN et al., 2010). Bianchin et al. (1996) já demonstraram que bezerros antes da desmama e vacas, assim como bois de engorda (CASTRO et al., 2009) não necessitam de tratamento e relataram que a utilização de dosificações de anti-helmínticos nestas faixas etárias é de pouca utilidade.

Com base na dinâmica da infecção por nematodas gastrintestinais e nos dados epidemiológicos, em teoria, uma excelente estratégia de controle da verminose em bovinos de corte, com melhor custo benefício, seria o tratamento profilático apenas dos animais que apresentassem comprovada carga parasitária, geralmente com contagem de ovos por grama de fezes (OPG) acima de 200, denominado assim por tratamento seletivo (UENO; GONÇALVES, 1998). Entretanto, principalmente nas condições brasileiras de criação, em que são observados grandes rebanhos de animais criados em regime extensivo, as dificuldades de realizar exames laboratoriais, assim como manejo frequente do gado, são fatores que tornam difícil a execução desse tipo de controle.

Em contrapartida, existe o controle estratégico, que considera as características ambientais como clima, a umidade e a temperatura. Esse é o modelo de tratamento mais utilizado no Brasil e já vem sendo estudado há anos, principalmente pela Embrapa Gado de Corte. O tratamento estratégico é a prática que considera as características epidemiológicas de cada região, com tratamentos concentrados em épocas desfavoráveis ao desenvolvimento das formas de vida livre no ambiente e restando o hospedeiro como principal abrigo no período (MELO; BIANCHIN, 1977; BIANCHIN, 1991; BIANCHIN et al., 1996).

Melo (1977) e Honer e Vieira-Bressan (1992), relataram que o tratamento de animais com mais de dois anos de idade, não proporciona ganhos de peso adicionais, indicando que a época crítica para o emprego de anti-helmínticos é entre a desmama e a referida idade.

3.2 Relação parasito-hospedeiro e suas relações com o sistema imune

No Brasil Central, *Haemonchus* spp., *Cooperia* spp. e *Oesophagostomum* sp. são os nematodas mais prevalentes em bovinos (BIANCHIN; HONER, 1987; HONER; VIEIRA-BRESSAN 1992; BIANCHIN et al., 1996; OLIVEIRA et al., 2009; TORRES et al., 2009; SANTOS et al., 2010; HECKLER et al., 2016; FACHIOLLI et al., 2017). As condições de clima, como umidade e temperatura, facilitam a sobrevivência desses parasitos no ambiente. Além disso, as populações desses helmintos são reguladas pelo seu potencial biótico, dentre os tricostrongilídeos, por exemplo, o gênero *Haemonchus* apresenta as espécies mais prolíferas, com alta produção de ovos, já os indivíduos pertencentes à *Cooperia*, têm compensada a baixa produção de ovos, com maiores populações de adultos (UENO; GONÇALVES, 1998; BOWMAN, 2010).

A resistência do hospedeiro contra tais parasitos varia em função da idade, vigor, genética, presença ou ausência de uma infecção previamente estabelecida e da imunidade inata e adquirida (BIANCHIN, 2007).

Ao parasito é vantajoso ludibriar as defesas do hospedeiro induzindo-o a desenvolver uma resposta imune ineficiente, buscando um nicho adequado para maturação e propagação, sem matar ou prejudicar o mesmo. Reciprocamente, o hospedeiro tem por ideal gerar uma resposta imune eficaz para expulsar o parasito, minimizar seus efeitos nocivos, enquanto não sacrifica sua capacidade de elaborar resposta contra outros patógenos (ANTHONY et al., 2007).

Quando a resposta imunológica contra os parasitos adultos é eficaz, ocorre redução no crescimento, na fecundidade das fêmeas, mudanças morfológicas e a expulsão da população mecanicamente pelo hospedeiro, sendo tal resposta mais eficiente em função da imunidade adquirida, em consequência de repetidas infecções ao longo da vida do hospedeiro (MILLER, 1984; BALIC et. al., 2000).

O conhecimento dos principais mecanismos de defesa imune contra os diversos agentes infecciosos permite a compreensão da patogênese das doenças parasitárias e das várias estratégias do hospedeiro e do parasito. O sistema imunológico atua numa rede de cooperação, envolvendo a participação de muitos componentes estruturais, moleculares e celulares (MACHADO et al., 2004; ANTHONY et al., 2007).

3.2.1 Resposta imunológica aos helmintos

As infecções helmínticas e a resposta imunológica correspondente do hospedeiro, são resultantes de uma prolongada relação co-evolutiva entre o hospedeiro e o parasito (ANTHONY et al., 2007). Os nematodas gastrintestinais passam por vários estádios de desenvolvimento no hospedeiro mamífero, cada um desses estádios apresentando diferentes desafios antigênicos para o sistema imunológico. Ao mesmo tempo em que o parasito utiliza mecanismos para evadir à resposta imunológica do hospedeiro (ROBINSON et al., 2011).

De maneira geral, as infecções parasitárias podem induzir dois tipos de resposta imunológica. A imunidade inata, presente desde o nascimento, não é específica e pode responder aos diferentes agentes da mesma forma sem produzir células de memória. Compreende barreiras estruturais (pele e membrana de mucosas) e fisiológicas (pH e níveis de oxigênio). Em adição, células fagocitárias e outros leucócitos, como as células *natural killer* (NK), estão envolvidos diretamente na fagocitose, pinocitose, morte celular e resposta inflamatória. Tais processos não são influenciados pelo contato prévio com o agente infeccioso e formam a primeira linha de defesa do organismo, retardando o processo da infecção, as células mais importantes na resposta imune inata são neutrófilos e macrófagos a qual produzem citocinas, proteínas sinalizadoras que recrutam outras células inflamatórias durante o desencadeamento da resposta inflamatória (DELCENSERIE et al., 2008).

A imunidade adquirida por outro lado, ocorre com o passar do tempo, de acordo com a exposição do organismo aos patógenos. Esse tipo de resposta imune permite o reconhecimento e atuação contra antígenos, resposta esta mediada por linfócitos B (assim denominados quando a maturação ocorre no tecido linfóide gastrintestinal ou medula óssea) ou linfócitos T (quando a maturação celular ocorre no timo). Essas células se desenvolvem em dias e/ou semanas e apresentam memória, o que garante maior eficiência em casos de reinfecção (TIZARD, 2008).

Em geral, os parasitos extracelulares, especialmente os helmintos, estimulam as respostas de tipo 2 (Th2) onde a interleucina-4 desempenha um papel proeminente na elevação dos mecanismos imunológicos humorais e na modulação de elementos efetores que alteram a fisiologia intestinal para criar um ambiente hostil para esses organismos (URBAN et al., 1996).

3.2.1.1 Imunidade celular frente aos helmintos

Após o parasito se alojar na mucosa intestinal do hospedeiro, um mecanismo efetivo inicial importante no controle da carga parasitária, e nos fenômenos de autocura, é a inflamação da mesma. Autocura é a capacidade do hospedeiro em combater a infecção, onde a inflamação é desencadeada quando o organismo percebe que está sendo atacado. Desta maneira, o organismo utiliza células sentinelas, como por exemplo, mastócitos, macrófagos e as células dendríticas, que são ativados quando padrões moleculares associados a patógenos (PAMPs) ou alarminas se ligam a seus receptores. Em resposta eles sintetizam e secretam citocinas e outros compostos, os quais desencadeiam a inflamação enquanto inicia a ativação da imunidade adquirida (WAKELIN, 1978).

Os mastócitos e os eosinófilos são as principais células efetoras tipicamente associadas com infecções helmínticas. Os mastócitos possuem citoplasma recoberto por grânulos (lisossomas secretores) e podem localizar-se no tecido conjuntivo, na pele e nas mucosas. E, quando presentes nas mucosas, respondem especificamente à invasão por helmintos. Na sua degranulação os mastócitos liberam moléculas inflamatórias, presentes nos grânulos, sendo que em algumas espécies o mecanismo de indução da liberação envolvido nessa etapa é relacionado à imunoglubulina E (IgE) (BALIC et al., 2000).

Após as infecções por helmintos, o número de eosinófilos pode aumentar dramaticamente, levando ao que se conhece como eosinofilia, no sangue e tecidos. Sua liberação pela medula óssea é estimulada por eotaxinas, interleucina 5 (IL-5) e quimiocinas, produzidas pelos linfócitos T helper 2 (Th2) e mastócitos. Os eosinófilos são atraídos aos locais de degranulação dos mastócitos e ativados, aumentando a sua habilidade para destruir os parasitos (BALIC et al., 2000).

Estudos *in vitro* demonstram a importância dos eosinófilos no combate aos parasitos e, em muitos casos, os eosinófilos agem mais efetivamente contra os estádios larvais, necessitando da cooperação dos anticorpos, e/ou sistema complemento, para maior eficácia (MEEUSEN; BALIC, 2000). *In vivo*, os eosinófilos podem danificar e, provavelmente, matar as L3 de *H. contortus* em ovinos infectados artificialmente; contudo, a presença dos eosinófilos no tecido, por si só, não é suficiente e depende da interação com outros fatores microambientes, como a ação de mastócitos intra-epiteliais e IL-4 (BALIC et al., 2006).

Terefe et al. (2007), ao avaliarem o potencial de ação dos eosinófilos *in vitro*, observaram que essas células promoveram redução drástica na motilidade das L3

incubadas com os eosinófilos extraídos do sangue de ovinos, infectados artificialmente por *H. contortus*. Após a incubação, as larvas foram transferidas intra-abomaso e em sua maioria não se estabeleceram no hospedeiro.

Quando o parasito alcança o tecido do hospedeiro, ocorrem os seguintes eventos: (i) ativação do sistema imune dentro de 1-2 dias, correspondente a infecção com o estádio de L3; (ii) um segundo pico de ativação, dias 5-7 pós desafiado, correspondente ao rápido crescimento do estágio de alimentação de sangue - L4, e (iii) uma redução da regulação da ativação imune durante o estágio de infecção crônica do adulto (ROBINSON et al., 2011). Os níveis de mRNA IL-4 e IL-13 no tecido abomasal foram 14 e 30 vezes mais altos, respectivamente, sete dias após a infecção de bezerros Nelore *naive* infectados por *H. placei*, em comparação com um grupo controle não infectado, evidenciando o papel importante de uma resposta tipo Th2 precoce (IBELLI et al., 2011). As citocinas, como IL-4 e IL-13, induzem a produção de imunoglobulinas antiparasitárias (IgG, IgM, IgA e IgE) e também a hiperplasia de mastócitos e eosinofilia (ROBINSON et al., 2011).

A identificação dos genes de citocinas envolvidos na resposta do hospedeiro e a explicação de sua função devem ser estudadas para estabelecer os diferentes graus de resistência do hospedeiro, permitindo o desenvolvimento de melhores métodos de controle de vermes (GASBARRE et al., 2001; GLASS et al., 2005).

3.2.1.2 Imunidade humoral frente aos helmintos

O desenvolvimento da resposta imune no hospedeiro está associado, principalmente, a uma resposta prévia contra o parasito, que se torna efetiva em torno de 18 a 24 meses de idade do animal. Assim, a partir dessa faixa etária, a tendência é ocorrer redução na carga parasitária, diminuição no número de ovos eliminados nas fezes e baixa incidência de casos clínicos associados a verminoses (BIANCHIN et al. 1995, 2007; CATTO et al. 2009; BRESCIANI et al., 2001).

Os mecanismos responsáveis pela manifestação da resistência do hospedeiro frente aos parasitos não foram completamente esclarecidos até o momento. Todavia, existe uma associação com a resposta imune mediada por linfócitos, o aumento do número de mastócitos na mucosa e a produção de anticorpos específicos (AMARANTE, 2004).

Os linfócitos B podem ligar-se ao antígeno através de seus receptores para serem estimulados e produzirem anticorpos ou, também tornarem-se eficazes células apresentadoras de antígenos. Após a ligação ao antígeno, o complexo receptor da célula B (BCRs) mais o antígeno, podem ser internalizados, degradados ou transportados a um compartimento intracelular, onde moléculas recémsintetizadas de classe II, do complexo de histocompatibilidade principal (MHC), junto aos fragmentos dos antígenos, interagem e formam complexos. Desta forma, os linfócitos T são ativados e co-estimulam o linfócito B, permitindo sua total ativação (TIZARD, 2008).

Quando liberados nos fluídos corpóreos, os BCRs são denominados anticorpos (Ac) ou imunoglobulinas (Ig). A secreção de Imunglobulinas é realizada por plasmócitos (TIZARD, 2008).

As imunoglobulinas diferem em tamanho, carga elétrica, aminoácidos e carboidratos. As principais classes de imunoglobulinas são: IgA, IgD, IgE, IgG e IgM. As respostas de IgA são tipicamente associadas às infecções por nematodas gastrintestinais, entretanto, são predominantemente observadas em locais de infecção nas mucosas (BALIC et al., 2000).

Contudo, a resposta imune aos parasitos gastrointestinais não é inicialmente humoral, é viabilizada por uma resposta Th2 onde há reconhecimento do parasito por elementos da imunidade inata. Mobilização de células como macrófagos, basófilos, eosinófilos, mastócitos e células dendríticas que são induzidas a produção de citocinas (IL-4, IL-10 e IL-13) que por sua vez estimulam a produção de anticorpos. IL-10, por exemplo, é crucial para determinação do isótipo de anticorpos lgG1 e lgG4. Quando estas capacidades são alteradas, diminuem as defesas séricas contra helmintos (ELSE; FINKELMAN, 1998; VIVEIROS, 2009).

Nishi et al. (2002), conduzindo dois experimentos, para conhecer a dinâmica da resposta em anticorpos séricos da classe IgG, em bezerros, após a infecção por *H. placei*, observaram que os bezerros infectados desenvolveram resistência às reinfecções, com acentuado decréscimo de OPG, na segunda infecção, e os níveis de IgG séricas mantiveram-se elevados, independentes do decréscimo de OPG. No segundo experimento, no qual os bezerros haviam sido submetidos a uma melhor dieta proteica, houve maior concentração de IgG séricas, sugerindo uma melhor resposta às infecções quando comparados aos submetidos a dietas com níveis proteicos mais baixos.

3.3 Imunotécnica

Os métodos imunológicos desenvolvidos para quantificar a concentração de antígenos e anticorpos, por apresentarem grande sensibilidade e especificidade, tornaram-se técnicas padronizadas para pesquisa e aplicações clínicas. Entre esses métodos, um dos mais usados é o ELISA (*Enzyme-linked immunosorbant assay*) ou teste de imunoadsorção enzimática. A detecção de anticorpos específicos no soro contra antígenos dos parasitos pode ser efetuada por meio desses testes. A técnica de ELISA foi desenvolvida na década de 70, no século passado (ENGVALL; PERLMANN, 1971), muitos estudos foram aprimorando o ELISA padrão, assim como, as diversas variações de ELISA: Dot-ELISA, fucose manose ligant-ELISA ou FML-ELISA, bovine submaxillary mucin-ELISA ou BSM-ELISA, Fast-ELISA, micro ELISA, entre outras. A vantagem dessa técnica é que ela pode ser aplicada a um grande número de amostras em curto espaço de tempo. Além disso, pode ser adaptada para o uso com diversos tipos de antígenos, como: antígenos brutos, sintéticos ou recombinantes (ALVES; BEVILACQUA, 2004; MAIA; CAMPINO, 2008).

O ensaio basicamente funciona da seguinte maneira, as reações antígenoanticorpo são detectadas por meio da conjugação de um desses componentes com
um segundo anticorpo marcado com uma enzima, que posteriormente age sobre um
substrato, produzindo uma coloração, que pode ser detectada visualmente ou
mensurada por espectrofotometria. Essas técnicas utilizam uma superfície sólida,
geralmente microplacas de poliestireno, para adsorção do antígeno ou anticorpo,
posteriormente permitindo a remoção de componentes que não reagiram por meio
de sucessivas lavagens. Então, a presença de produto colorido indica a presença de
antígeno ou anticorpo que se está querendo identificar. Trata-se de um método
eficiente, pois permite detectar quantidades de proteína na ordem de nanogramas.
Quanto ao método de revelação, pode ser direto ou indireto. No primeiro, a enzima
reveladora encontra-se ligada diretamente ao segundo anticorpo, enquanto no
indireto, a enzima apresenta-se ligada a um anti-anticorpo (MADRUGA; ARAÚJO;
SOARES; 2001).

O ELISA é uma técnica difundida e é utilizada em estudos com diferentes objetivos, mas todos com a intenção de investigar o perfil da imunidade humoral dos animais frente a vários tipos de patógenos, inclusive os parasitos. Gasbarre e Douvres (1987) utilizaram o ELISA para observar a resposta de anticorpos em

bezerros imunizados com produtos de excreção e secreção de *O. radiatum* e constataram que os bezerros imunizados apresentaram IgG e IgA séricas aumentadas, mas não foram observadas diferenças para os anticorpos IgG2 e IgM séricos.

Nishi et al. (2002) propuseram em um estudo por meio do ELISA, para conhecer a dinâmica de anticorpos séricos (IgG) em bezerros experimentalmente infectados por *H. placei*. Já Rosalinski-Moraes, Minozzo e Thomaz-Soccol (2008) entendendo o mecanismo da resposta imune em cordeiros frente aos nematodas gastrintestinais, utilizando o ELISA, e que este, poderia fornecer informações a respeito da imunidade etária, resistência aos helmintos e consequentemente criar programas de seleção de animais resistentes, concluíram que é possível a produção de antígeno a partir de indivíduos adultos da espécie *H. contortus* e o seu uso em métodos de ensaio imunoenzimático para detecção de anticorpos da classe IgG em ovinos.

A transferência de anticorpos maternos específicos contra *H. contortus* e a resposta imune humoral em caprinos naturalmente infectados, foram demonstradas pelo ELISA no estudo de Guedes et al. (2010), a técnica detectou a presença de IgG, IgM e IgA específicos no soro, colostro e leite. Por meio do ELISA, foi possível constatar que a imunidade humoral passiva contra *H. contortus* em cabritos ocorre através do colostro e não pela transferência transplacentária de anticorpos.

Bassetto et al. (2011) utilizaram o ELISA para titulação de IgG, testando uma vacina contra *H. placei* e *H. contortus* em bezerros desafiados com 8000 larvas infectantes, concluíram que houve uma imunização desses animais, redução significativa na produção de ovos e números de parasitos de ambas as espécies. Estudo semelhante a esse foi reproduzido em bezerros naturalmente infectados testando a mesma vacina contra *H. placei* e *H. similis*, mostrando que a imunização estimulou a produção de níveis elevados de IgG contra os antígenos da vacina e redução na produção de ovos de *Haemonchus* spp. de 85% em comparação com o controle (BASSETTO et al., 2014).

4 MATERIAL E MÉTODOS

4.1.1 Área de estudo e animais experimentais

As amostras foram coletadas em duas propriedades comerciais localizadas respectivamente nos municípios de Miranda e Corumbá, Mato Grosso do Sul (19°59'35.03"S, 56°52'52.58"O e 19°29'10.25"S, 57° 1'53.05"O, respectivamente). Segundo a classificação de Köppen (OMETTO, 1981), o clima da região é considerado subtipo AW (clima tropical de savana = cerrado). A temperatura média nos meses mais frios está acima de 17°C e nos mais quentes a média mensal está em torno de 25°C.

As propriedades trabalham em sistema completo de produção (cria, recria e engorda) com predominância da raça Nelore e alguns animais de cruzamento industrial (Brangus x Nelore), sob as mesmas condições de manejo, em regime extensivo, com suplementação mineral e com sistema de identificação individual SISBOV. Selecionou-se 1147 animais aleatoriamente separados por categoria (prédesmame, desmamados, sobreanos e adultos); em dois períodos nos meses de abril e maio de 2016 e abril e maio de 2017, épocas que correspondem ao manejo de todos os animais nas propriedades.

Nas categorias estabelecidas os animais apresentavam, quando das coletas as seguintes idades: pré-desmame, de cinco a 10 meses; desmamados, 11 a 17 meses; sobreanos, 18 a 24 meses e adultos apresentando mais de 30 meses.

4.1.2 Amostras Biológicas

As amostras de fezes foram coletadas individualmente, diretamente da ampola retal dos animais utilizando sacos plásticos, e mantidas sob refrigeração até o processo de análise. Concomitantemente à coleta de fezes, amostras individuais de sangue dos mesmos animais foram também coletadas, em tubos tipo *vacutainer* para obtenção de soro. As amostras foram centrifugadas após a retração do coagulo e armazenadas à temperatura de -20 °C, em tubos de congelamento, até o processamento das reações sorológicas.

4.1.3 Contagem de ovos por grama de fezes (OPG) e seleção dos soros para reações imunoenzimáticas

As contagens de ovos por grama de fezes (OPG) foram realizadas no laboratório de Parasitologia Animal, do Instituto de Biociências da Universidade Federal de Mato Grosso do Sul (UFMS) por meio da técnica McMaster (GORDON;

WHITLOCK, 1939) com as seguintes modificações: uso de quatro gramas de fezes, dissolvidas em 56mL de solução saturada de cloreto de sódio; com leitura em duas células da câmara e empregando o fator de correção 50. Os resultados foram tabulados, para distribuição das frequências e determinação das classes de distribuição (alta, média e baixa), segundo os valores obtidos nas contagens.

Imediatamente após determinar as contagens de ovos nas fezes, 369 soros foram selecionados, segundo os resultados do OPG correspondentes as maiores e menores contagens, considerando os seguintes critérios: 0 e 50 OPG (baixa) e 400-2950 OPG (alto) para a categoria pré-desmame; 0 (baixo) e 300-1700 (alto) OPG para desmamados; 0 (baixo) e 250-850 (alto) OPG para sobreanos; e 0 (baixo) e 200-550 (alto) OPG para a categoria adultos. Os soros das amostras das contagens intermediárias foram descartados.

4.1.4 Coproculturas

Foi formado um *pool* a partir das amostras com as maiores contagens do OPG para serem processadas em coprocultura e determinação dos gêneros de parasitos predominantes, para cada categoria animal, conforme a técnica descrita por Roberts; O'sullivan (1950), com as seguintes modificações: as amostras de fezes da mesma categoria animal foram reunidas até formarem uma massa de cerca de 40g, misturadas com volume igual de vermiculita[®] (granulação média), mantidas em frascos de boca larga com uma placa de Petri como tampa e mantidas por cerca de sete dias a temperatura ambiente. Após o sétimo dia, os frascos foram completamente cheios de água aquecida a ±45°C, invertidos e, transcorridas de duas a três horas, o conteúdo das placas foi aspirado e recolhido em frasco tipo Erlenmeyer, o qual foi armazenados em estufa (B.O.D) a temperatura de 20°C, até o exame das larvas infectantes para identificação dos gêneros sob microscópio de luz. A identificação dos gêneros seguiu a proposta de Keith (1953).

4.1.5 Indução de infecção

Para obtenção dos antígenos totais de formas adultas de *Haemonchus placei* e *Oesophagostomum radiatum*, um bezerro da raça girolando, com 7 meses de idade e peso de 68 Kg, foi mantido a pasto *Brachiaria brizantha* em piquete na Faculdade de Medicina Veterinária e Zootecnia (FAMEZ) da UFMS. O bezerro foi adquirido de uma propriedade leiteira que tem como protocolo dosificar

sistematicamente contra helmintos todos os animais. Portanto, imediatamente após sua chegada uma contagem de ovos por grama de fezes foi realizada, apresentando 950 OPG. Após um período de adaptação de 48 horas pós chegada; o bezerro foi inoculado com suspensão contendo cerca de 70 mil larvas (L3) (44% *Cooperia* spp.; 35% *Haemonchus* sp. e 21% *Trichostrongylus* sp.) por via oral, proveniente das coproculturas realizadas com as amostras de fezes coletadas no período de setembro de 2017 no rebanho experimental. Amostras de fezes foram coletadas semanalmente para acompanhamento da infecção induzida. Confirmada a infecção, a necropsia do animal foi realizada no 67º dia pós inoculação, para obtenção dos nematodas adultos previstos.

516 517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

507

508

509

510

511

512

513

514

515

4.1.6 Obtenção de antígenos totais (AT)

O animal foi necropsiado, seu trato digestório separado em seções com ligadura duplas. A abertura individual do abomaso, intestino delgado e intestino grosso foi realizada em bandejas para permitir a separação e recuperação dos espécimes adultos de parasitos correspondentes. Para obtenção dos antígenos totais, os espécimes foram recolhidos nos respectivos órgãos e transferidos para placas de Petri contendo NaCl 0,8%, para remoção de detritos, transferidos para uma nova placa e lavados por duas vezes em solução de PBS (pH 8,0) estéril por agitação, para eliminação de outros resíduos do conteúdo dos órgãos de origem. Em seguida, cada espécie foi processada separadamente em tubo homogeneizador tipo Plotter, com embolo de nylon, previamente resfriados, adicionado com solução de PBS, e submetido à desintegração por aproximadamente 5 minutos com o embolo acoplado em um motor de velocidade ajustável. O tubo homogeneizador com os espécimes foi mantido permanentemente em banho de gelo picado e a operação de desintegração foi repetida, até que todo o material se apresentasse homogêneo e com poucos fragmentos visíveis. Após homogeneização de cada amostra, o conteúdo foi transferido para tubo Falcon 50mL e centrifugado a 15.000g por 30 minutos a 4°C (Centrifuge 5804 R, Eppendorf®). O sobrenadante foi recolhido em frascos tipo balão para liofilização, liofilizado e em seguida re-suspendido em 8 mL de solução de TRIS-EDTA a 1mM (pH 8,0), distribuídos em alíquotas de 2mL em tubos de congelamento e imediatamente congelados a -20°C para posterior processamento. A determinação da concentração das proteínas totais foi realizada em NanoDrop 2000/Spectophotometer (Thermo Scientific), usando absorbância A280 no modo Abs1 (DESJARDINS et al., 2009).

4.1.7 Identificação dos espécimes adultos

Alguns espécimes adultos recuperados foram fixados em formol a 10% quente. Representantes dos dois gêneros de interesse foram examinados e mensurados, seus caracteres taxonômicos diagnósticos forma observados em microscópio de luz DM 5500 B, Leica[®] e fotografadas com câmera DFC 495, Leica[®], utilizando o programa Leica Apication Suite Version 3.8.0, bem processados para documentação em Microscópio Eletrônico de Varredura (MEV) Hitachi[®] TM 3000.

A preparação da amostra para microscopia de luz foi realizada da seguinte forma: os espécimes foram montados em lâmina temporária com fenol alcóolico (LINCHTENFELS, 1975) e identificados de acordo com Chabaud e Durette-Desset (1974), Jacquiet et al. (1997) e Lichtenfels e Pilitt (2000).

O processamento para MEV se deu da seguinte forma: a desidratação dos espécimes foi realizada em concentrações crescentes de álcool (70, 80, 90 e 100GL), com duração de 20 minutos em cada uma, seguida por posterior permanência em álcool absoluto durante 24h. Posteriormente, o álcool absoluto foi substituído gradativamente, por diluição em hexametildisilazano (HMDS - Sigma-Aldrich). Após a secagem, as amostras foram montadas em suporte metálico contendo fita de carbono, metalizados com ouro e observadas em microscópio eletrônico.

4.1.8 Teste de Imunoadsorção Enzimática (ELISA)

As amostras de soro dos animais selecionados foram submetidas ao teste imunoenzimático ELISA, todas as reações foram realizadas no Laboratório de Imunologia (InBio/UFMS). Utilizou-se placas de 96 poços de poliestireno (Hemobag®), que foram previamente sensibilizadas com 100μL da suspensão com antígeno total de *H. placei* e *O. radiatum* na concentração de 10μg/mL, diluído em PBS 0,01M pH 7,2, incubadas a 37°C por duas horas e em seguida a 4°C *overnight*. Após, o conteúdo das placas foi desprezado e estas lavadas por três vezes com 180μL de solução de lavagem (PBS-Tween 20 0,05%) em cada poço. Em seguida foi realizado o bloqueio dos poços com 180μL de solução de bloqueio (leite desnatado 5% em PBS-Tween 20) e incubado por duas horas a 37°C. Após novo

ciclo de lavagens, foram adicionados os soros dos bovinos na quantidade de 100μL na concentração de 1:160 com solução a 2% de leite desnatado em PBS-Tween 20. As placas foram incubadas por uma hora a 37°C e lavadas três vezes em PBS-Tw20. Em seguida, adicionou-se 100μL de IgG de cabra anti-IgG bovino conjugado com peroxidade (KPL®), diluído 1:500 em solução a 2% de leite desnatado em PBS-Tw20. Após incubação por uma hora a 37°C, as placas foram lavadas como descrito anteriormente. A revelação da reatividade enzimática foi feita com a adição de 100μL da solução substrato-cromógena (o-Phenylenediamine dihydrochloride P1526-10G peroxidase substrate Sigma-Alorich® e peróxido de hidrogênio a 30% em tampão citrato-fosfato), por poço. Após 30 minutos de incubação a 37°C, a reação enzimática foi interrompida pela adição de 50μL de H₂SO₄ 2N. A leitura das placas foi realizada em espectofotômetro com comprimento de onda de 492 nm, utilizando o aparelho Spectra Max 190. As amostras de soro foram avaliadas com uma repetição.

O *Cut off* do teste imunoenzimático foi determinado em 18 placas da reação e a partir de 53 soros considerados padrão negativo (Soro Fetal Bovino), pela fórmula: **C.O.= X + 2SD**. Onde: **X** é a média aritmética das densidades ópticas (D.O) dos soros padrão negativo e **SD** o respectivo desvio padrão.

O índice de reatividade (I.R) de cada soro foi calculado pela relação entre a D.O da amostra / D.O do *cut off* . O resultado foi considerado **reagente** quando o I.R foi maior ou igual a 1,0; **não reagente** quando menor que 0,8 e **inconclusivo** quando entre 0,8 e 1,0.

4.2 Análise Estatística

Além das análises estatísticas descritivas comparativas para as diferentes categorias animais e a distribuição das frequências nas classes das contagens de OPG usando a fórmula proposta por Sturges (1926) e calculada a amplitude de classes (h= A/k; onde A= amplitude total da amostra e k= número de classes calculado pela regra de Sturges). Foram realizadas análises comparativas entre as médias das contagens de OPG nas diferentes categorias empregando a Análise de Variância (one way ANOVA), seguida pelo pós-teste de Tukey, os resultados das contagens foram transformados em log₁₀ (x + 1) para normalização dos dados. Valores de p<0,05 foram considerados estatisticamente significativos. Ambos os testes foram executados no software SPSS Statistics 17.

Para análise das Densidades Ópticas foram feitas análises estatísticas descritivas representadas em gráficos Box Plot. Correlação de Pearson foi realizada para verificar a associação entre as variáveis estudadas. Análise de normalidade pelo teste Kolmogorov-Smirnov foi efetuada, para assim então os resultados serem analisados por meio de Análise de Variância (one way ANOVA) e as diferenças entre as categorias foram medidas pelo pós-teste de Tukey. Também foi calculado o *cut off* e em seguida o Índice de Reatividade para cada amostra e em seguida analisados por meio de Análise de Variância (one way ANOVA) e as diferenças entre as categorias foram medidas pelo pós-teste de Tukey. Valores de p<0,05 foram considerados estatisticamente significativos. Os testes foram executados no software BioEstat 5.4.

4.3 Aspectos Éticos

O experimento atendeu aos princípios Éticos da Experimentação Animal adotados pela Comissão de Ética no Uso de Animais – CEUA da Universidade Federal de Mato Grosso do Sul, protocolo 786/2016.

5 RESULTADOS E DISCUSSÃO

No presente estudo, foram examinadas amostras fecais de 1147 bovinos, e em todas as categorias examinadas foi constatada infecção por nematodas gastrintestinais, diagnosticadas por meio do OPG. Com os dados obtidos, foi possível verificar que houve diferença significativa entre as médias dos grupos, animais das categorias sobreanos e adultos não diferiram estatisticamente entre si (p>0,05), no entanto, as categorias pré-desmame e desmamados apresentaram resultados de OPG superiores às demais categorias, bem como entre elas (p<0,05). As médias do OPG entre as categorias estão expressas na Tabela 1.

Tabela 1. Média, desvio padrão, amplitude e mediana das contagens de ovos por grama de fezes (OPG) em diferentes categorias de bovinos naturalmente infectados por nematodas gastrintestinais, em duas propriedades comerciais de Mato Grosso do Sul, Brasil, no período de 2016-2017.

	Contagem de Ovos por Grama de Fezes (OPG)						
Categorias	N	Média Desvio Padrão ± (Amplitude)	Mediana	Média ajustada* Desvio Padrão ± (Amplitude)	Mediana*		
Pré- desmame	288	372,91 ± 436,50 (0- 2950)	250	2,1027 ± 0,93 (0- 3,47) ^a	2,4		
Desmamados	205	222,19 ± 323,13 (0- 1700)	100	1,5791 ± 1,11 (0- 3,23) ^b	1		
Sobreanos	343	57,72 ± 115,49 (0- 850)	0	0,7469 ± 1,01 (0- 2,93) °	0		
Adultos	311	39,54 ± 67,52 (0- 550)	0	0,7931 ± 0,9 (0- 2,74) °	0		
Total	1147	161,33 ± 301,11 (0- 2950)	50	1,2486 ± 1,15 (0- 3,47)	1,71		

^{*} Média e Mediana dos valores ajustados por Log₁₀ (X+1). Letras diferentes indicam médias estatisticamente diferentes (p<0,05).

Os resultados obtidos, assemelham-se às observações feitas por Bianchin et al. (1996), cujas médias dos OPG apresentaram uma tendência de declínio a partir dos 18 meses de idade, obviamente, depois de sucessivas infecções, pois nessa relação parasito-hospedeiro, o desenvolvimento da imunidade está associado a exposições prévias e sucessivas aos parasitos e não a idade.

De acordo com a distribuição de frequências, calculada pelo método de Sturges (1926), os dados foram distribuídos em sete classes (k=7), com amplitude de 300 OPG em cada classe. As frequências de OPG na categoria adultos se distribuíram apenas nas duas primeiras classes, com 99,4% das amostras contidas na primeira classe (≤300). Em contrapartida, a categoria pré-desmame apresentou dados diferentes dos adultos, com os resultados de OPG se distribuindo em todas as sete classes, sendo 63,6% das amostras com OPG na primeira classe de frequência (Figura 1). Na categoria dos desmamados, observou-se semelhante à categoria pré-desmame com distribuição em seis classes e 77,1% das amostras agrupadas na primeira classe (≤300). Entretanto, a categoria sobreanos os resultados dos OPG se distribuíram apenas nas três primeiras classes, com 95% das amostras distribuídas na primeira classe (≤300), de forma similar à categoria adultos (Figura 1).

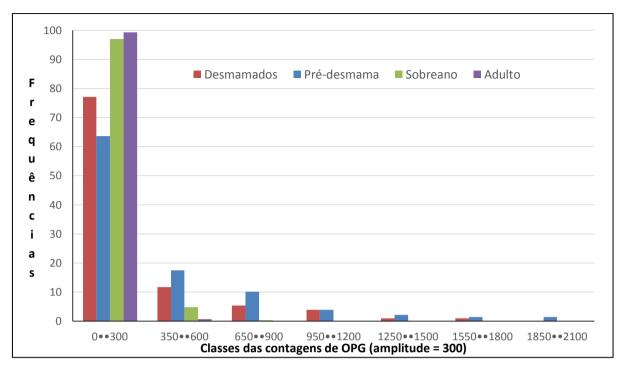


Figura 1. Distribuição das frequências relativas nas contagens de ovos por grama de fezes (OPG), por categoria (pré-desmama, desmamados, sobreano e adulto), descriminando as classes calculadas pelo método de Sturges (1926) em bovinos de corte, naturalmente infectados por nematodas gastrintestinais, em duas propriedades comerciais de Mato Grosso do Sul, Brasil, no período 2016-2017.

As distribuições das frequências de OPG, apresentadas na Figura 1 reforçam os argumentos sobre a teoria de que a imunidade adquirida se consolida ao redor dos 18 a 24 meses de idade (categoria sobreanos). Esta mesma tendência, de redução no OPG, devido à imunidade adquirida, pôde ser deduzida em outros estudos semelhantes, realizados nessa mesma região (LIMA et al., 1970; MELO; BIANCHIN, 1977; BIANCHIN et al., 1990).

Armour et al. (1985) comenta que a imunidade adquirida contra a maioria dos nematodas, principalmente os gastrintestinais, é um processo que se desenvolve lentamente e que, muitas vezes, requer um ano completo antes que essa imunidade seja estabelecida.

Quanto aos gêneros de helmintos gastrintestinais identificados nas coproculturas, em ordem decrescente de ocorrência foram: *Haemonchus* sp., *Cooperia* sp., *Oesophagostomum* sp. e *Strongyloides* sp., a porcentagem de larvas nas diferentes categorias está representada na Figura 2.

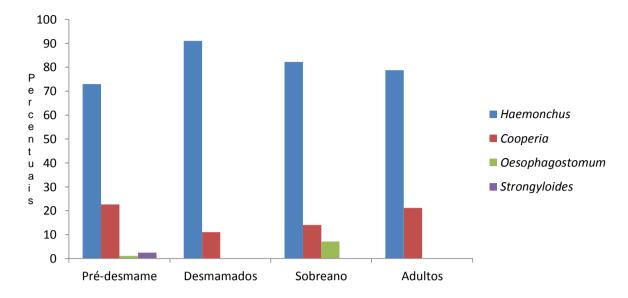


Figura 2. Percentuais de larvas de gêneros de helmintos recuperadas nas coproculturas, para cada categoria de bovinos naturalmente infectados por nematodas gastrintestinais, em duas propriedades comerciais de Mato Grosso do Sul, Brasil, no período 2016-2017.

Haemonchus sp. foi o parasito mais prevalente observado nas coproculturas. De acordo com Ueno e Gonçalves (1998), esse parasito pode ocorrer nas zonas temperadas e tropicais em qualquer época do ano, sendo mais prevalentes e abundantes após os períodos de chuvas.

Bianchin et al. (2007) estudando a resistência à infecção natural por nematodas gastrintestinais em bovinos em região de clima tropical, encontraram os seguintes gêneros recuperados a partir de coproculturas: *Haemonchus*, *Cooperia*, *Oesophagostomum* e *Trichostrongylus*. Dados semelhantes a esses também foram reportados por Heckler (2015).

Por não se tratar de uma infecção monoespecífica, *H. placei* e *O. radiatum* foram identificados e selecionados durante a necropsia do animal doador, após obtenção dos antígenos totais de ambas as espécies, as dosagens de proteínas de AT dos espécimes foram estimadas usando volume de 2µL de AT, para *H. placei*, foi estimado em 27,20 mg/mL e para *O. radiatum* em 21,83 mg/mL.

Quando avaliados os AT de *H. placei* e *O. radiatum*, com proposta de determinar a respostas dos anticorpos séricos da classe de IgG total, em bovinos de corte em diferentes faixas etárias e naturalmente infectados, foi constatado que os soros apresentaram alguma reatividade para ambos os antígenos (Figuras 3 e 4).

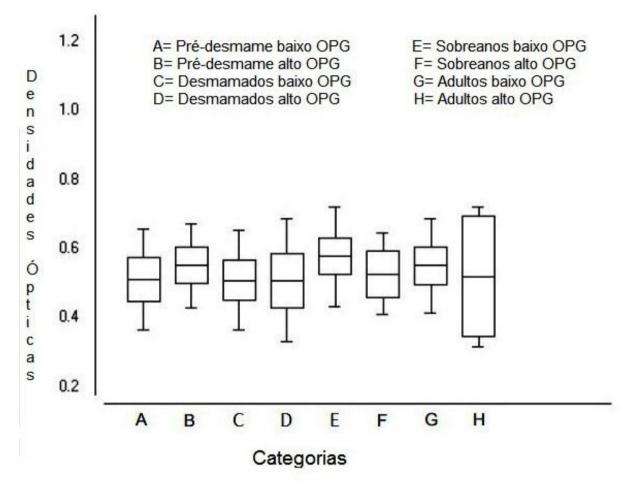


Figura 3. Gráfico Box Plot com distribuição das médias e desvio padrão das densidades ópticas (D.O) para antígenos totais de *Haemonchus placei* em soros de bovinos de corte, para diferentes categorias etárias (pré-desmame, desmamados, sobreanos e adultos), naturalmente infectados por nematodas gastrintestinais, em duas propriedades comerciais em Mato Grosso do Sul, Brasil, no período 2016-2017.

Pode-se observar na Figura 3 que existem dissensões entre as médias das densidades ópticas (D.O) para cada categoria animal e até mesmo dentro da classificação do OPG (alto e baixo). Entretanto, analisando o gráfico das densidades ópticas, frente ao antígeno *H. placei*, é possível notar uma homogeneidade entre as categorias, com uma maior dispersão na distribuição dos dados na categoria adultos com alto OPG (Figura 3).

Ao se comparar as médias das D.O, referente ao antígeno total de *O. radiatum*, é possível notar uma distribuição dos dados semelhantes para as categorias pré-desmame e desmamados, que possuem médias inferiores, e por sua vez se distanciam das categorias sobreanos e adultos, tanto para OPG baixo quanto alto (Figura 4).

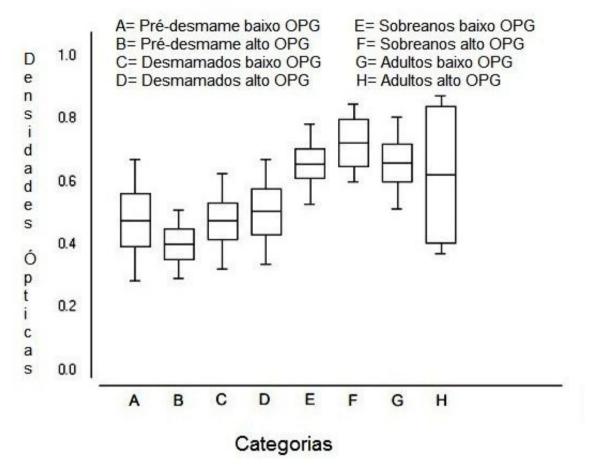


Figura 4. Gráfico Box Plot com distribuição das médias e desvio padrão das densidades ópticas (D.O) para antígenos totais de *Oesophagostomum radiatum* em soros de bovinos de corte, para diferentes categorias etárias (pré-desmame, desmamados, sobreanos e adultos), naturalmente infectados por nematodas gastrintestinais, em duas propriedades comerciais em Mato Grosso do Sul, Brasil, no período 2016-2017.

Segundo Nish et al. (2002), a presença de anticorpos da classe IgG, em infecções por nematodas, não possui validade para diagnóstico, uma vez que é comum reação cruzada entre anticorpos semelhantes com outros táxons de tricostrongilídeos. Todavia, a presença dessas proteínas permite a obtenção de informações sobre a dinâmica da resposta imune em condições experimentais. É importante ressaltar que a variação da resposta imune de bezerros a esses parasitos sofre influências da quantidade de larvas ingeridas, idade, genética e sexo (NIEUWLAND et al. 1995).

Kanobana et al. (2001) afirmam que o uso de antígenos totais, como os utilizados no presente estudo, deveria resultar sim em um nível substancial de reação cruzada entre os tricostrongilídeos, entretanto, em seu estudo, os resultados do ELISA, produziram padrões de reatividade que foram únicos para as várias

espécies de parasitos. Com os dados obtidos e expressos nos gráficos (Figuras 3 e 4), a resposta aos extratos antigênicos de *H. placei* e *O. radiatum* apresentaram resultados distintos, entretanto, uma possível reação cruzada entre eles e com outras espécies de tricostrongilídeos não pode ser descartada, uma vez que não é possível determinar a infecção a nível específico ou genérico para os 369 animais selecionados, principalmente porque foi utilizado apenas os resultados de OPG, como forma de diagnóstico.

No presente estudo não foi possível evidenciar a correlação entre o OPG e o reconhecimento de IgG total para antígeno total de *H. placei* (p=0,907), empregando a técnica de ELISA. As médias das D.O não apresentaram diferenças estatísticas entre as categorias pré-desmame, desmamados e adultos (p>0,05), apenas a categoria sobreanos (p<0,05) apresentou média estatisticamente superior às demais (Tabela 2), calculado pelo teste de Tukey.

Tabela 2. Média, desvio padrão e amplitude das Densidades Ópticas, obtidas pela técnica de ELISA empregando IgG total sobre antígenos totais de *Haemonchus placei* e *Oesophagostomum radiatum,* em reações com amostras de soros de bovinos de corte, naturalmente infectados por nematodas gastrintestinais, distribuídos em diferentes categorias etárias (pré-desmame, desmamados, sobreanos e adultos), em duas propriedades comerciais em Mato Grosso do Sul, Brasil, no período 2016-2017.

		Densidades Óptic	as (D.O)	
		Haemonchus placei	Oes	ophagostomum radiatum
Categorias	N	Média ± Desvio Padrão (Mínimo-Máximo)	N	Média ± Desvio Padrão (Mínimo-Máximo)
Pré-desmame	97	0,53 ±0,14 (0,24-0,79) ^a	97	0,45 ±0,17 (0,15-0,90) ^a
Desmamados	106	0,51 ±0,16 (0,22-0,87) ^a	106	$0,49 \pm 0,16 (0,20-0,82)^a$
Sobreanos	95	$0,57 \pm 0,15 (0,32-1,06)^{b}$	95	$0,71 \pm 0,17 (0,33-1,38)^{b}$
Adultos	71	$0,54 \pm 0,15 (0,20-0,82)^a$	71	$0,74 \pm 0,28 (0,22-1,75)^{b}$
Total	369	0,54 ±0,15 (0,20-1,06)	369	0,58 ±0,23 (0,15-1,75)

 Teste de ANOVA seguido pelo teste *pos hoc* de Tukey. Letras diferentes indicam médias estatisticamente diferentes (p<0,05). Não foram avaliadas as diferenças entre as Densidades Ópticas aos antígenos totais de *H. placei* e *O. radiatum*.

Nishi et al. (2002) constataram por meio do ELISA a produção de IgG entre a terceira e quarta semana após a primeira infecção por *H. placei* em bezerros *naive*. E que esses níveis de IgG inicialmente apresentaram-se baixos, elevando-se até

atingir um pico na sétima semana e se mantendo com pequenas oscilações até o final do experimento. No entanto, independente dos valores obtidos nas contagens de OPG, observou-se que os bezerros com uma dieta proteica em níveis adequados, conseguiram melhor superar os efeitos do parasitismo, quando comparados a bezerros com dieta deficiente e submetidos ao mesmo desafio, pois esses animais que receberam dieta otimizada apresentaram níveis de IgG mais altos, independente de terem sido imunizados previamente ou não.

Seó et al. (2015) executaram a técnica de ELISA utilizando antígenos brutos de adultos e larvas de terceiro estágio de *H. placei* em soro de bovinos mestiços naturalmente infectados e observaram uma relação inversa entre os níveis de IgG total e o OPG, para o antígeno total das larvas; esses animais que apresentaram menor reatividade ao IgG apresentaram maior nível de infecção por nematodas gastrintestinais. Nesse mesmo estudo, não foi observada diferença significativa entre OPG e quantificação de IgG sérica utilizando antígeno total do parasito adulto.

Zaros et al. (2010) também observaram níveis mais elevados de IgG1 frente a antígenos totais de larvas de *H. placei* em bovinos da raça Nelore naturalmente infectados. Os animais considerados resistentes apresentaram maiores índices nas leituras de densidade óptica quando comparados aos bovinos suscetíveis. O gado resistente também produziu níveis mais altos de IgG1 frente a *Cooperia*, que os touros suscetíveis, o que sugere que essa imunoglobulina desempenha um papel na proteção do hospedeiro.

Todos os soros selecionados e testados para o antígeno total de *H. placei* apresentaram I.R. maior ou igual a 1,0, portanto considerados reagentes. Não se observa variação da I.R. entre as categorias etárias, exceto na categoria de sobreanos, que apresentou valores de I.R. mais ligeiramente elevados, em seu conjunto e na média que as demais categorias (p<0,05) (Figura 5).

Haemonchus placei

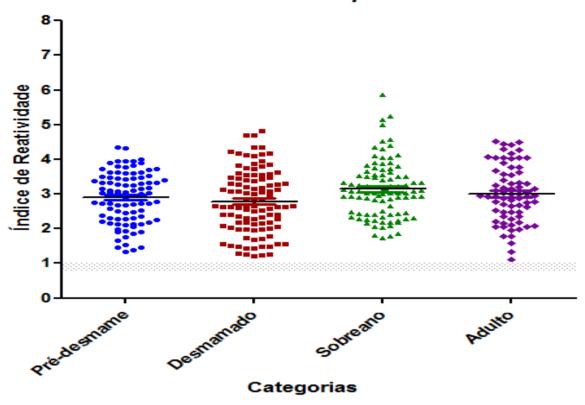


Figura 5. Índice de reatividade (I.R.) calculado para amostras de soros de bovinos de corte à antígeno total de *Haemonchus placei*, distribuídos em diferentes categorias etárias (pré-desmame, desmamados, sobreanos e adultos), naturalmente infectados por nematodas gastrintestinais, em duas propriedades comerciais em Mato Grosso do Sul, Brasil, no período 2016-2017.

Ao contrário do que foi observado para *H. placei*, houve correlação negativa (p=0,001; r= - 0,178) entre o OPG e quantificação de IgG total para antígeno total de *O. radiatum*. Os animais que apresentaram menor reconhecimento pelo IgG apresentaram maior nível de infecção por nematodas gastrintestinais e vice-versa. As médias das D.O ao antígeno total de *O. radiatum* não diferiram entre as categorias pré-desmame e desmamados (p>0,05), mas estas diferiram das categorias sobreanos e adultos (p<0,05), sendo que estas últimas apresentaram maiores médias e não diferiram entre si (Tabela 2).

Segundo Gasbarre e Douvres (1987) as infecções causadas por *O. radiatum* estimulam alto nível de imunidade protetora no hospedeiro, em infecções experimentais por estes parasito, os autores observaram respostas altas de IgG1 em 3 a 4 semanas após a infecção.

Gasbarre e Canals (1989), trabalhando com bezerros da raça Holandesa, imunizados por via intramuscular com antígeno total de *O. radiatum*, investigaram por meio do ELISA, a resposta imune frente à IgM e IgA policionais e IgG1 e IgG2 purificados. Esses autores concluíram que a resposta imune gerada nos bezerros vacinados indicou que a proteção contra infecção correlacionou-se significativamente com os níveis de anticorpo da classe IgG2.

Os dados obtidos no presente estudo, com bovinos portadores de infecção naturalmente adquirida, sugerem que existe uma resposta de IgG total às infecções por *O. radiatum* e que essa apresenta uma tendência de crescimento a medida que os animais vão ficando mais senis. Essas observações podem estar relacionadas à biologia do parasito, principalmente quando se refere ao *O. radiatum*, uma vez que esta espécie apresenta alta patogenicidade para animais que cursam a primeira infecção, mas que nas infecções subsequentes resultam em uma resposta imunológica eficiente, apresentando antígenos capazes de produzir uma resposta mais evidente (GASBARRE; CANALS, 1989).

Outro aspecto a ser considerado é que a resistência dos hospedeiros frente aos parasitos pode estar correlacionada ao reconhecimento de epítopos específicos. Estas respostas podem não ser detectadas usando os antígenos totais; os quais foram usados neste estudo. Da mesma forma que as respostas de anticorpos podem mudar com o tempo, tais correlações só podem ser evidentes em tempos posteriores a infecção (GASBARRE; LEIGHTON; DAVIES,1993).

Sonstegard e Gasbarre (2001), afirmaram que bezerros *naive* mantidos em pastagem, com presença de *Ostertagia* e *Cooperia*, apresentaram quantidades de parasitos de ambos os gêneros após 30 dias, mas que essa condição não seguiu a termo após 120 dias de desafio, o que indica que a resposta imune a esses dois gêneros de parasitos se comportam de maneira distinta. Isto indica que nem todas as espécies de parasitos reagem da mesma forma diante o sistema imune do hospedeiro.

Levando em consideração o I.R. das amostras testadas para o AT de *O. radiatum*, foi possível observar que dos 369 soros testados, dois apresentaram valores entre 0,8 e 1,0, os quais são considerados inconclusivos. Todavia, é possível observar homogeneidade no I.R. entre as categorias pré-desmame e desmamados (p>0,05), sendo que estes valores médios diferem nas categorias

sobreanos e adultos (p<0,05), que também diferem das outras duas categorias (Figura 6).

Oesophagostomum radiatum

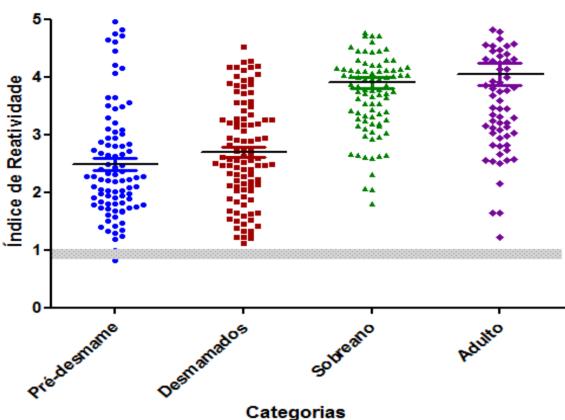


Figura 6. Índice de reatividade (I.R.) calculado para amostras de soros de bovinos de corte à antígeno total de *Oesophagostomum radiatum*, distribuídos em diferentes categorias etárias (pré-desmame, desmamados, sobreanos e adultos), naturalmente infectados por nematodas gastrintestinais, em duas propriedades comerciais em Mato Grosso do Sul, Brasil, no período 2016-2017.

Em relação aos grupos classificados segundo as contagens altas e baixas de ovos por grama de fezes, não observou-se diferença significativa nos resultados do teste de ELISA empregando o AT de *H. placei* (p>0,05). As médias das densidades ópticas estão representadas na Tabela 3.

Tabela 3. Média, desvio padrão e amplitude das Densidades Ópticas, obtidas pela técnica de ELISA empregando IgG total sobre antígenos totais de *Haemonchus placei* e *Oesophagostomum radiatum*, em reações com amostras de soro de bovinos de corte, naturalmente infectados por nematodas gastrintestinais, distribuídos em diferentes categorias etárias (pré-desmame, desmamados, sobreanos e adultos) e classificados em função da contagem do OPG (alto x baixo), em duas propriedades comerciais em Mato Grosso do Sul, Brasil, no período 2016-2017.

877	
878	

		Densidades Ópticas (D.O)								
		Haemonchus placei	Oesophagostomum radiatum							
OPG	N	Média ± Desvio Padrão (Mínimo-Máximo)	N	Média ± Desvio Padrão (Mínimo-Máximo)						
OPG BAIXO	237	0,54 ±0,14 (0,24-0,95) ^a	237	0,60 ±0,23 (0,15-1,75) ^a						
OPG ALTO	132	0,53 ±0,16 (0,20-1,06) ^a	132	0,55 ±0,22 (0,20-1,38) ^b						
Total	369	0,54 ±0,16 (0,20-1,06)	369	0,58 ±0,23 (0,15-1,75)						

Teste de ANOVA *pos hoc* Tukey. Letras diferentes indicam médias estatisticamente diferentes (p<0,05). Não foram consideradas as diferenças entre as Densidades Ópticas aos antígenos totais de *H. placei* e *O. radiatum*.

Gill et al. (1993) estudaram a cinética das respostas de anticorpos anti-*H. contortus* no soro de carneiros geneticamente resistentes e suscetíveis, por meio do método de ELISA, para quantificar as imunoglobulinas IgA, IgG1, IgG2 e IgM e constataram que as respostas de IgG1 e IgA séricos foram negativamente correlacionadas com o OPG tanto nos animais resistentes quantos nos animais sensíveis aos tricostrongilídeos. No entanto, não observaram diferenças nas respostas de anticorpos IgG2 e IgM entre os dois genótipos.

Em relação aos grupos com alto e baixo OPG, empregando AT de *O. radiatum*, houve diferença significativa (p<0,05) entre os grupos; evidenciando maiores D.O nas amostras de soro dos animais com baixa contagem no OPG (Tabela 3).

A exposição a *O. radiatum* em animais *naive* resulta em um rápido aparecimento de imunidade protetora. Como tal, estes parasitos permanecem como um problema apenas para os animais mais jovens no rebanho (SONSTEGARD; GASBARRE, 2001). Bricarello et al. (2008) selecionaram bovinos da raça Nelore e utilizando o OPG como critério, selecionaram animais com diferentes graus de resistência à infecção natural por *C. punctata*, onde os resistentes eram aqueles que apresentavam baixo OPG e os suscetíveis aqueles que apresentavam alto OPG. Apesar de não ser sempre estatisticamente significante, o grupo considerado

resistente produziu níveis mais altos de IgG1 sérica do que o grupo suscetível, ao longo do experimento. Diferentemente, os níveis séricos de IgG2 permaneceram baixos ou ausentes durante toda a infecção. Achados semelhantes a esses também foram reportados por Kanobana et al. (2001) e no presente estudo frente ao antígeno total de *O. radiatum*.

Entretanto, Gasbarre; Leighton; Davies (1993) estudando a relação de imunidade e genética em bezerros da raça Angus naturalmente infectados por triconstrongilídeos, também observaram que os valores de OPG foram ascendentes durante o estudo, mas que ao analisarem as amostras de soro desses animais para anticorpos das classes IgG1, IgG2, IgA e IgM, constataram aumento significativo nos níveis de resposta aos anticorpos apenas para classe IgG1 em *H. placei* e não foram observados aumentos nos níveis dos anticorpos frente ao antígeno de *O. radiatum*. Os mesmos autores, concluíram que os níveis de anticorpos não parecem estar correlacionados com os valores de OPG. Esses resultados indicam que a capacidade dos bezerros de reconhecer antígenos de parasitos é fortemente influenciada por fatores genéticos e que os fatores genéticos que controlam as respostas com anticorpos podem diferir daqueles que controlam os valores de OPG.

Por outro lado, Albers (1981) demonstrou que os bezerros infectados artificialmente por *C. oncophora* com altas contagens de ovos nas fezes, apresentaram títulos de anticorpos mais baixos contra antígeno total de *C. oncophora* quando comparados aos bezerros com baixa contagem de ovos nas fezes.

Outro aspecto que pode ser considerado ao se analisar os presentes resultados, foi o uso de anticorpos policionais, os quais aumentam substancialmente a detecção de antígenos inespecíficos, pois eles são produzidos a partir do estímulo de múltiplas células B. Assim, essas imunoglobulinas apresentam diferentes níveis de especificidade e afinidade a um mesmo epítopo do antígeno. Quando se utiliza uma imunoglobulina monocional, podemos acentuar a afinidade e/ou especificidade aos antígenos empregados. No caso de anticorpos policionais, existe amplitude de afinidade e especificidade, o que torna a detecção menos efetiva e homogênea.

O fato é que a resposta imune depende de muitos fatores e nunca é a mesma, nem tampouco constante. Isto porque a resposta imune depende de múltiplos fatores associados como: genótipo, fenótipo, status nutricional, idade, sexo, premunição, condições fisiológicas, ambiente, etc. Isso tudo pode estar

inclusive correlacionado, dessa forma, indivíduos da mesma raça, no mesmo ambiente, submetidos à mesma dieta, podem apresentar resposta imune diferente.

Na década de 1990, Honer e Vieira-Bressan (1992) apontaram a investigação do fenômeno da resistência inerente nos hospedeiros e, estudos imunológicos dos hospedeiros frente à nematodas parasitos, visando o desenvolvimento de vacinas como medidas de controle a serem empregadas contra tais parasitos. Acreditamos que estudos que revelem esse fenômeno devam ser melhor esclarecidos até mesmo nos dias de hoje.

6 CONCLUSÕES

Houve redução gradativa das contagens de OPG de acordo com o aumento da idade dos animais naturalmente infectados, indicando que a imunidade adquirida se consolida em torno de 18 a 24 meses de idade, corroborando as hipóteses presentes na literatura e até então não confirmadas experimentalmente no campo.

Em relação à espécie *H. placei* não foi possível relaciona-la à resposta humoral mediada por IgG total. No entanto, para a espécie *O. radiatum* observou-se uma relação nas categorias etárias sobreano e adulto, quando comparados às outras categorias, sugerindo que para essa espécie parasita a resposta é mais evidente.

Portanto com base nos resultados obtidos, a relação entre a contagem de ovos nas fezes e a resposta humoral por IgG total no soro de bovinos, mensuradas por teste de ELISA, podem não estar diretamente correlacionadas.

7 REFERÊNCIAS

Albers, G. A. A. Genetic resistance to experimental *Cooperia oncophora* infections in calves. Tese de Doutorado. Agricultural University, Wageningen, 1981.

ALVES, W. A; BEVILACQUA, P. D. Reflexões sobre a qualidade do diagnóstico da leishmaniose visceral canina em inquéritos epidemiológicos: o caso da epidemia de Belo Horizonte, Minas Gerais, Brasil, 1993-1997. **Cadernos de Saúde Pública**, v. 20, n. 1, p. 259-265, 2004.

- 973 AMARANTE, A. F. T. CONTROLE INTEGRADO DE HELMINTOS DE BOVINOS
- 974 E OVINOS. In: XIII Congresso Brasileiro de Parasitologia Veterinária e I Simpósio
- Latino-Americano de Ricketisioses, 13p. 2004, Ouro Preto. **Anais**. Ouro Preto, 2004.
- 976 p. 68-71.

ANDERSON, N. BREMMNER, K. V.; HAMMERBERG, B. Pathophysiology of nematodiasis in cattle. **Veterinary Clinics of North America: Food Animal Practice**, v. 2, n. 2, p. 225-234, 1986.

981

ANTHONY,R.M.; RUTITZKY,L. I.; URBAN JR, J. F.; STADECKER, M.J.; GAUSE, W. C. Protective immune mechanisms in helminth infection. **Nature Reviews** Immunology, v. 12, p. 975-987, 2007.

985

ARMOUR, J; BAIRDEN, K.; BATTY, A. F.; DAVISON, C. C.; ROSS, D. B. Persistent anthelmintic activity of ivermectin in cattle. **The Veterinary Record**, v.116, n. 6, p. 151-153, 1985.

989

990 BALIC, A; BOWLES, V.M.; MEEUSEN, E.N.T. The Immunobiology of gastrointestinal 991 nematode infections in ruminants. **Advances in Parasitology**, v. 45, p.1 81-241, 992 2000.

993

994 BALIC, A.; CINNINGHAM, C.P.; MEEUSEN, E.N. Eosinophil interactions with 995 *Haemonchus contortus* larvae in the ovine gastrointestinal tract. **Parasite** 996 **Immunology**, v.28, p. 107-115, 2006.

997

BASSETTO, C. C.; SILVA, B. F.; NEWLANDS, G. F.; SMITH, W. D.; AMARANTE, A. F. Protection of calves against *Haemonchus placei* and *Haemonchus contortus* after immunization with gut membrane proteins from *H. contortus*. **Parasite Immunology**, v. 33, n. 7, p. 377-81, 2011.

1002

BASSETTO, C. C.; SILVA, M. R.; NEWLANDS, G. F.; SMITH, W. D.; RATTI JÚNIOR, J.; MARTINS, C. L.; AMARANTE, A. F. Vaccination of grazing calves with antigens from the intestinal membranes of *Haemonchus contortus*: effects against natural challenge with *Haemonchus placei* and *Haemonchus similis*. **International Journal for Parasitology**, v. 44, n. 10, p. 697-702, 2014.

1008

BIANCHIN, I. Epidemiologia e controle de helmintos gastrintestinais em bezerros a partir da desmama, em pastagem melhorada, em clima tropical do Brasil. 1991. 162p. Tese (Doutorado em Medicina Veterinária). Universidade Federal Rural do Rio de Janeiro, Seropédica, 1991.

1013

BIANCHIN, I.; CATTO, J.B.; KICHEL, A.N.; TORRES JÚNIOR, R.A.A.; HONER, M.R. The effect of the control of endo and ectoparasites on the weight gains in crossbred cattle (Bos taurus x Bos indicus) in the central region of Brazil. **Tropical Animal Health and Production**, v. 39, p. 287-296, 2007.

1018

BIANCHIN, I; CATTO, J.B. Epidemiologia e alternativas de controle de helmintos em bovinos de corte na região central do Brasil. **XV Congresso Brasileiro de**Parasitologia Veterinária. Embrapa Gado de Corte, Campo Grande, 2009.

BIANCHIN, I.; HONER, M.R. Helminth parasites of beef cattle in the Cerrado Region of Brazil. **Tropical Animal Health and Production**, v. 19, p. 39-45, 1987.

1025

BIANCHIN, I.; HONER, M.R.; NASCIMENTO, Y. A. The epidemiology of helminths in Nellore beef cattle in the cerrado of Brazil. In: Symposium "Epidemiology of bovine nematode parasites in the Americas". Eds. J. Guerrero and W.H.D. Leaning. XVI World Buiatrics Congress, Salvador, Bahia, Brazil, 1990, p.41-47

1029 1030

BIANCHIN, I.; HONER, M.R.; NUNES, S.; NASCIMENTO, Y.A.do. The effect of stocking rates and treatment schemes on the weight gain of weaned Nellore steers in the Brazilian savanna. **Tropical Animal Health and Production**, v. 27, p.1-8, 1995.

1034

BIANCHIN, I.; HONER, M. R.; NUNES, S. G.; NASCIMENTO, Y. A.; CURVO, J. B. E.; COSTA, F. P. Epidemiologia dos nematódeos gastrintestinais em bovinos de corte nos cerrados e o controle estratégico no Brasil Campo Grande – MS, Brasil [Circular Técnica]. Campo Grande: Embrapa Gado de corte. 1996. (Circular Técnica).

1040

BOWMAN, D.D. **Parasitologia Veterinária de Georgis.** 9ª ed., São Paulo: Elsevier, 2010. 432p.

1043

BRESCIANI, K.D.S; NASCIMENTO, A.A.; COSTA, A.J.; AMARANTE, A.F.T.; PERRI, S.H.V.; LIMA, L.G.F. Frequência e intensidade parasitária de helmintos gastrintestinais em bovinos abatidos em frigorífico da região noroeste do Estado de São Paulo, SP, Brasil. **Semina Ciências Agrárias**, v. 22, n.1, p. 93-97, 2001.

1048

BRICARELLO, P.A.; ZAROS, L.G.; COUTINHO, L.L.; ROCHA, R.A.; KOOYMAN, F.N.; VRIES, E.; GONÇALVES, J.R.; LIMA, L.G.; PIRES, A.V.; AMARANTE, A.F. Field study on nematode resistance in Nelore-breed cattle. **Veterinary Parasitology**, v. 148, n. 3-4, p. 272-278, 2007.

1053

BRICARELLO, P.A.; ZAROS, L.G; COUTINHO, L.L.; ROCHA, R.A.; SILVA, M.B.; KOOYMAN F.N.J.; VRIES, E; YATSUDA, A.P; AMARANTE, A.F.T. Immunological responses and cytokine gene expression analysis to *Cooperia punctata* infections in resistant and susceptible Nelore cattle. **Veterinary Parasitology**, v. 155, p. 95-103, 2008.

1059

BRYAN, R.P.; KERR, J.D. The relationship between the natural worm burden of steers and the faecal egg count differentiated to species. **Veterinary Parasitology**, v. 30, n.4, p. 327-334, 1989.

1063

CASTRO, S.R.S.; GARCIA, A.R.; VIANA, R.B.; NAHÚM, B.S.; COSTA, N.A.; ARAÚJO, C.V.; BENIGNO, R.N.M. Uso de anti-helmínticos e bioestimulantes no desempenho de bovinos de corte suplementados a pasto no estado do Pará. Ciência Animal Brasileira, v. 10, n. 2, p. 527-537, 2009.

1068

1069 CATTO, J. B.; UENO, H. Nematodioses gastrintestinais em bezerros zebus no 1070 Pantanal Matogrossense. I. Prevalência, intensidade de infecção e variação 1071 estacional. **Pesquisa Agropecuária Brasileira**, v. 16, n. 1, p. 129-140, 1981.

- 1073 CATTO, J.B., BIANCHIN, I., SANTURIO, J.M., FEIJÓ, G.L.D., KICHEL, A.N., SILVA,
- 1074 J.M. Sistema de pastejo, rotenona e controle de parasitas em bovinos cruzados:
- 1075 Efeito no ganho de peso e no parasitismo. Revista Brasileira de Parasitologia
- 1076 **Veterinária**, v. 18, n. 4, p. 37-43, 2009.

- 1078 CHABAUD, A. G; DURETTE-DESSET, M. C. Description d'un nouveau Nematode
- Oesophagostome, parasite d'Hyemoschus au Gabon, et remarques sur le genre
- 1080 Oesophagostomum. Bulletin du Muséum d'histoire naturelle, v. 123, n. 184,
- 1081 p.1415-1424, 1974.

1082

- 1083 CHARLIER, J; HOGLUND, J.; SAMSON-HIMMELSTJERNA, G. V; DORNY, P.;
- VERCRUYSSE, J. Gastrointestinal nematode infections in adult dairy cattle: Impact
- on production, diagnosis and control. **Veterinary Parasitoloy**, v. 164, n.1, p. 70-79,
- 1086 2009.

1087

- 1088 COSTA, A. J. Helmintos parasitos de bezerros do Município de Uruana Goiás,
- 1089 Brasil. **Arquivos da Escola de Veterinária**, v. 31, n. 1, p. 33-36, 1979.

1090

- DELCENSERIE, V.; LAMOUREUX, M. D.; BOUTIN, J. A. Immunomodulatory effects
- of probiotics in the intestinal tract Cur Issues. **Molecular Biology**, 10:37-54. 2008.

1093

- DESJARDINS, P.; HANSEN, J. B; ALLEN, M. Microvolume Protein Concentration
- Determination using the NanoDrop 2000c Spectrophotometer. Journal of Visualized
- 1096 **Experiments**, v. 4, n. 33, 2009.

1097

- 1098 ENGVALL, E.; PERLMANN, P. Enzyme-linked immunosorbent assay (ELISA).
- Quantitative assay of immunoglobulin G. Immunochemistry, v. 8, n. 9, p. 871-874,
- 1100 1971.

1101

- 1102 ELSE, K. J.; FINKELMAN, F. D. Intestinal nematode parasites, cytokines and effector
- mechanisms. International Journal of Parasitology, v. 28, p. 1145-58, 1998.

1104

- 1105 FACHIOLLI, D. F; SAES, I. L.; DELLAQUA, J. V. T.; SOUSA, O. A.; PINTO, L. D.;
- SANTI, P. F.; YAMADA, P. H.; TARDIVO, R.; AMARANTE, A. F. T.; SOUTELLO, R.
- 1107 V. G. Anthelmintic treatment and supplementation in Nellore calves performance in
- the post-weaning period. Semina: Ciências Agrárias, v. 38, n. 3, p. 1551-1560,
- 1109 2017.

1110

- 1111 GASBARRE, L. C.; DOUVRES, F. W. Protection from Parasite-Induced Weight Loss
- 1112 by the Vaccination of Calves with Excretory-Secretory Products of Larval
- Oesophagostomum radiatum. Veterinary Parasitology, v. 26, p. 95-105, 1987.

1114

- 1115 GASBARRE, L. C.; CANALS, A. Induction of Protective Immunity in Calves
- 1116 Immunized with Adult Oesophagostomum radiatum Somatic Antigens. Veterinary
- 1117 **Parasitology**, *v*.34, p.223-238, 1989.

1118

- GASBARRE, L. C.; LEIGHTON, E. A.; DAVIES, C. J. Influence of host genetics upon
- antibody responses against gastrointestinal nematode infections in cattle. **Veterinary**
- 1121 **Parasitology**, v. 46, p. 81-91, 1993.

- GASBARRE, L.C.: LEIGHTON, E.A.: SONSTEGARD, T. Role of the bovine immune 1123
- 1124 system and genome in resistance to gastrointestinal nematodes. Veterinary
- **Parasitology**, v. 98, p. 51-64, 2001. 1125

- GILL, H.S., HUSBAND, A.J. Isotype specific antibody responses to Haemonchus 1127
- contortus in genetically resistant sheep. Parasite Immunology v.15, p.61-67, 1993. 1128

1129

- GLASS, E.J.; PRESTON, P.M.; SPRINGBETT, A.; CRAIGMILE, S.; KIRVAR, E.; 1130
- WILKIE, G.; DUNCAN-BROWN, C.G. Bos taurus and Bos indicus (Sahiwal) calves 1131
- respond differently to infection with Theileria annulata and produce markedly 1132
- differently levels of acute phase proteins. International Journal for Parasitology, v. 1133
- 35, p. 337–347, 2005. 1134

1135

- GORDON, H.M.C.: WHITLOCK, H.V. A new technique for counting nematode eggs 1136
- in sheep faeces. Journal of Commonwealth Science and Industry Research 1137
- **Organization**, v.12, n.1, p.50-52, 1939. 1138

1139

- GRISI, L.; LEITE, R. C.; MARTINS, J. R. S.; BARROS, T. M.; ANDREOTTI, R.; 1140
- CANÇADO, P. H. D.; LÉON, A. A. P.; PEREIRA, J. B.; VILELA, H. S. Ressesment of 1141
- 1142 the potential economic impacto f cattle parasites in Brazil. Revista Brasileira de
- Parasitologia Veterinária, v. 23, n. 2, p. 150-156, 2014. 1143

1144

- GUEDES, M. T.: ZACHARIAS, F.: COUTO, R. D.: PORTELA, R. W.: SANTOS, L. C.: 1145
- SANTOS, S. C.; PEDROZA, K. C.; PEIXOTO, A. P.; LÓPEZ, J. A.; MENDONÇA-1146
- LIMA, F. W. Maternal transference of passive humoral immunity to Haemonchus 1147
- contortus in goats. Veterinary Immunology and Immunopathology, v. 136, n. 1-2, 1148
- p. 138-43, 2010. 1149

1150

- HECKLER, R. P. Epidemiologia e controle estratégico da verminose em 1151
- bovinos de corte. 2015.121p. Tese (Doutorado em Ciência Animal). Universidade 1152
- 1153 Federal de Mato Grosso do Sul, Campo Grande, 2015.

1154

- HECKLER, R. P.; BORGES, D. G. L.; VIEIRA, M. C.; CONDE, M. H.; GREEN, M.; 1155
- AMORIM, M. L.; ECHEVERRIA, J. T.; OLIVEIRA, T. L.; MORO, E.; VAN ONSELEN, 1156
- V. J.; BORGES, F. A. New approach for the strategic control of gastrointestinal 1157
- nematodes in grazed beef cattle during the growing phase in central Brazil. 1158
- Veterinary Parasitology, v. 221, p. 123-129, 2016. 1159
- HONER, M. H.; VIEIRA-BRESSAN, M. C. R. Nematódeos de bovinos do Brasil, o 1160
- estado da pesquisa 1991. Revista Brasileira de Parasitologia Veterinária, v. 1, n. 1161
- 1, p. 67-79, 1992. 1162

1163

- IBELLI, A.M.G.; NAKATA, L.C.; ANDREO, R., COUTINHO, L.L., OLIVEIRA, M.C.S., 1164
- AMARANTE, A.F.T., FURLONG, J., ZAROS, L.G., REGITANO, L.C.A. mRNA profile 1165
- of Nellore calves after primary infection with Haemonchus placei. Veterinary 1166
- **Parasitology**, v. 176, p. 195-200, 2011. 1167

1168

- JACQUIET, P. H.; CABARET, J; CHEIKH, D., THIAM, E. Identification of 1169
- Haemonchus species in domestic ruminants based on morphometrics of spicules. 1170
- Parasitology Research, v. 83, p. 82-86, 1997. 1171

- 1173 JASMER, D.P.; MCGUIRE, T. C. Antigens with application toward immune control of
- blood-feeding parasitic nematodes. British Vet Journal, v. 152, n. 3, p. 251-268,
- 1175 1996.

- 1177 KANOBANA, K.; VERVELDE, L.; VAN DER VEER, M.; EYSKER, M.; PLOEGER, H.
- 1178 W. Characterization of host responder types after a single Cooperia oncophora
- infection: kinetics of the systemic immune response. **Parasite Immunology**, v. 23, p.
- 1180 641-653, 2001.

1181

- KEITH, R.K. The differentiation of the infective larvae of some commoum nematode parasite of cattle. **Australian Journal of Zoology**, v. 1, n. 2, p. 223-235, 1953.
- 1184
- LICHTENFELS, J. R. Helminth of Domestic Equids. **The Helminthological society** of Washington, v. 42, p. 92, 1975.

1187

- 1188 MACHADO, P. R. L.; ARAUJO, M. I. A. S.; CARVALHO, L.; CARVALHO, E. M.
- Mecanismos de resposta imune às infecções. Anais Brasileiros de Dermatologia,
- 1190 v. 79, n. 6, p. 647-662, 2004.

1191

- 1192 MADRUGA, C. R.; ARAÚJO, F. R.; SOARES, C. O. Imunodiagnóstico em
- medicina veterinária. Campo Grande: Embrapa Gado de Corte, 2001. 360p.

1194

- MAIA, C.; CAMPINO, L. Methods for diagnosis of canine leishmaniasis and immune
- response to infection. **Veterinary Parasitology**, v. 158, n. 4, p. 274-87, 2008.

1197

- MEEUSEN, E.N.T.; BALIC, A. Do eosinophils have a role in the killing of helminth
- parasites? **Parasitology Today**, v.16, n.3, p.95-101, 2000.

1200

- MELO, H. J. H. Efeito de diferentes esquemas de tratamento anti-helmíntico no
- 1202 ganho de peso de bezerros Nelore desmamados e criados extensivamente em
- pastagens de Jaraguá (*Hyparrhenia rufa*). **Arquivos da Escola Superior de** Veterinária de Minas Gerais, v. 29, n. 3, p. 269-277, 1977.

1205

- 1206 MELO, H. J. H.; BIANCHIN, I. Estudos epidemiológicos de infecções por
- 1207 nematódeos gastrintestinais de bovinos de corte em zona de cerrado de Mato
- 1208 Grosso. **Pesquisa Agropecuária Brasileira**, v. 12, p. 205-216, 1977.

1209

- MILLER, H.R. The protective mucosal response against gastrointestinal nematodes
- 1211 in ruminants and laboratory animals. Veterinary Immunology and
- 1212 **Immunopathology**, v. 6, 167-259, 1984.

1213

- 1214 MORGAN, E.R. Detail and the devil of on-farm parasite control under climate
- change. **Animal Health Research Reviews**, v. 14, n. 2, p. 138–142, 2013.

1216

- 1217 NIEUWLAND, M. G.; PLOEGER, H. W.; KLOOSTERMAN, A.; PARMENTIER, H. K.
- 1218 Systemic antibody responses of calves to low molecular weight Cooperia oncophora
- antigens. **Veterinary Parasitology**, v. 59, n. 3-4, p. 231-239, 1995.

- 1221 NISHI, SM; RICHTZENHAIN, LJ; GENNARI, SM. Níveis de IgG séricos em bezerros
- 1222 experimentalmente infectados pelo Haemonchus placei. Brazilian Journal of
- Veterinary Research and Animal Science, v.39, n.2, p.107-110, 2002.

- OLIVEIRA, M.C.S.; ALENCAR, M.M.; CHAGAS, A.C.S.; GIGLIOTI, R.; OLIVEIRA,
- 1226 H.N. Gastrointestinal nematode infection in beef cattle of different genetic groups in
- 1227 Brazil. **Veterinary Parasitology**, v. 166, p. 249–254, 2009.

1228

OMETTO, J. C. Bioclimatologia vegetal. São Paulo, Ceres, 425p. 1981.

1230

- 1231 PASSAFARO, T. L; CARRERA, J. P. B.; SANTOS, L. L.; RAIDAN, F. S. S.;
- 1232 SANTOS, D. C. C.; CARDOSO, E. P.; LEITE, R. C.; TORAL, F. L. B. Genetic
- analysis of resistance to ticks, gastrointestinal nematodes and *Eimeria* spp. in Nellore
- cattle. **Veterinary Parasitology**, v. 210, n. 3-4, p. 224-34, 2015.

1235

- 1236 ROBERTS, F.H.S.; O'SULLIVAN, J.P. Methods for egg count sand larval cultures for
- 1237 strongyles infesting the gastrointestinal tract of cattle. Autralian Journal of
- 1238 **Agricutural Research**, v.1, n.1, p.99-102, 1950.

1239

- 1240 ROBERTS, F.H.S.; O'SULLIVAN, J.P.; RIECK, R. F. The epidemiology of parasitic
- gastro enteritis of cattle. Australian Journal of Agricultural Research, v. 3, p. 187-
- 1242 226, 1952.

1243

- 1244 ROBINSON, N.; PLEASANCE, J.; PIEDRAFITA, D.; MEEUSEN, E.N. The kinetics of
- 1245 local cytokine and galectin expression after challenge infection with the
- 1246 gastrointestinal nematode, Haemonchus contortus. International Journal for
- 1247 **Parasitology**, v. 41, p. 487–493, 2011.

1248

- 1249 ROSALINSKI-MORAES, F.; MINOZZO, J. C.; THOMAZ-SOCCOL, V. Produção de
- 1250 antígeno somático de Haemonchus contortus adultos e seu uso em ensaio
- imunoenzimático indireto para detecção de imunoglobulina G ovina. Archives of
- 1252 **Veterinary Science**, v. 13, n. 2, p. 118-125, 2008.

1253

- 1254 SANTOS, T.R.; LOPES, W.D.Z.; BUZULINI, C.; BORGES, F.A.; SAKAMOTO,
- 1255 C.A.M.; LIMA, R.C.A.; LOIVEIRA, G.P.; COSTA, A.J. Helminth fauna of bovines from
- 1256 Central-Western region, Minas Gerais State, Brazil. Ciência Rural, v. 40, n. 4, p.
- 1257 934-938, 2010.

1258

- 1259 SEÓ, H. L.; PINHEIRO MACHADO FILHO, L. C.; HONORATO, L. A.; SILVA, B. F.;
- 1260 AMARANTE, A. F, BRICARELLO, P. A. The effect of gastrointestinal nematode
- infection level on grazing distance from dung. **PLoS One**, v. 10, n. 6, 2015.

1262

- SONSTEGARD, T.S.; GASBARRE, L.C. Genomic tools to improve parasite
- resistance. **Veterinary Parasitology**, v. 101, n. 3-4, p. 387-403, 2001.

1265

- 1266 STURGES, H. The choice of a class-interval. Journal of American Statistical
- 1267 **Association**, v. 21, p. 65-66, 1926.

- 1269 TEREFE, G.; GRISEZ, C.; PREVOT, F.; BERGEAUD, J. P.; DORCHIES, P.;
- 1270 BRUNEL, J.C.; FRANÇOIS, D.; FOURQUAUX, I.; JACQUIET, P. In vitro pre-

- exposure of *Haemonchus contortus* L3 to blood eosinophils reduces their
- establishment potential in sheep. **Veterinary Research**, v. 38, p. 647-654, 2007.

1274 TIZARD, I.R. Imunologia veterinária, 5 ed., São Paulo: Elsevier, 587 p., 2008.

1275

TONGSON, M.S.; BALEDIATA, E. Epidemiology of bovine parasitic gastroenteritis.

Journal of Veterinary Medicine, v.11, p.63-72, 1972.

1278

- 1279 TORRES, S.E.F.A.; MCMANUS, C.; AMARANTE, A.F.T.; VERDOLIN, V.;
- 1280 LOUVANDINI, H. Nematódeos de ruminantes em pastagens com diferentes
- sistemas de pastejo com ovinos e bovinos. Pesquisa Agropecuária Brasileira, v.
- 1282 44, n. 9, p. 1191-1197, 2009.

1283

UENO, H.; GONÇALVES, P. C. **Manual para Diagnóstico das Helmintoses de Ruminantes**. 4ª ed., Tokyo: Japan International Cooperation Agency, 1998. 55p.

1286

- 1287 URBAN, J.F.JR; FAYER, R.; SULLIVAN, C.; GOLDHILL, J.; SHEA-DONOHUE, T.;
- MADDEN, K.; MORRIS, S.C.; KATONA, I.; GAUSE, W.; RUFF, M.; MANSFIELD,
- 1289 L.S.; FINKELMAN, F.D. Local TH1 and TH2 responses to parasitic infection in the
- 1290 intestine: regulation by IFN-gamma and IL-4. Veterinary Immunology
- 1291 **Immunopathology**, v. 54, n. 1-4, p. 337-344, 1996.

1292

- 1293 VIVEIROS, C. T. Parasitoses gastrintestinais em bovinos na ilha de S. Miguel,
- 1294 Açores Inquéritos de exploração, resultados laboratoriais e métodos de
- controle. 2009. 104 f. Dissertação (Mestrado) Universidade Técnica de Lisboa -
- 1296 Faculdade de Medicina Veterinária, 2009.

1297

WAKELIN, D. Genetic control of susceptibility and resistance to parasitic infection. **Advances in Parasitology**, v. 16, p. 219-308, 1978.

1300

- 1301 ZAROS, L. G., BRICARELLO, P. A.; AMARANTE, A. F. T.; ROCHA, R. A;
- 1302 KOOYMAN, F. N. J.; VRIES, E. Cytokine gene expression in response to
- Haemonchus placei infections in Nelore cattle. **Veterinary Parasitology**, v. 171, p. 68–73, 2010.
- 1305

1306

- 1308
- 1309
- 1310
- 1311
- 1312 1313
- 1314
- 1315
- 1316
- 1317
- 1318 1319
- 1320

8 ANEXOS

Anexo I: Dados absolutos da Contagem de ovos por grama de fezes (OPG) subdivididos em dois grupos, baixo e alto OPG, Densidade Óptica (D.O), Desvio Padrão (SD) da D.O e Índice de Reatividade (IR), de bovinos de corte naturalmente infectados, categoria Pré-desmame para antígeno total de *H. placei*.

328		Cat	egoria P	ré-Desm	ame para	antígeno <i>Ha</i>	emonchus p	olacei		
329	Amostras	OPG BAIXO	DO	SD	IR	Amostras	OPG ALTO	DO	SD	IR
330	56J	0	0.24195	0.048013	1.33716143	267J	850	0.3187	0.026163	1.7613281
331	268J	0	0.25045	0.051407	1.38413755	72J	850	0.33395	0.019728	1.84560884
332	312J	0	0.26305	0.007142	1.45377274	15J	1300	0.3438	0.010889	1.90004587
333	273J	0	0.2658	0.001556	1.46897089	343J	950	0.3851	0.032244	2.1282945
	337J	0	0.2755	0.031113	1.52257893	51J	850	0.38615	0.016193	2.13409748
334	264J	0	0.29955	0.03585	1.65549372	270J	2050	0.3948	0.024961	2.18190259
335	326J	0	0.343	0.097864	1.89562459	332J	900	0.4128	0.013576	2.28138143
336	303J	0	0.34935	0.030335	1.93071851	47J	950	0.4157	0.031113	2.2974085
337	57J	0	0.3583	0.010182	1.9801816	311J	1050	0.42825	0.029769	2.3667674
338	356J	0	0.3719	0.00594	2.0553434	74J	1900	0.4289	0.018809	2.3703597
339	240J	0	0.3832	0.016405	2.117794	35J	950	0.4425	0.018526	2.44552152
340	366J	0	0.38625	0.007283	2.13465014	350J	2950	0.44805	0.00799	2.4761941
341	39J	50	0.39195	0.005445	2.16615177	367J	1600	0.4541	0.070428	2.5096301
342	272J	0	0.39765	0.043204	2.1976534	353J	1000	0.4589	0.017819	2.5361578
343	17J	0	0.4089		2.25982768	28F	500	0.48545	0.129896	2.68288909
344	265J	0	0.412	0.02489	2.27696015	44F	650	0.6736		2.68288909
345	275J	0	0.4183	0.032385	2.31177774	344J	1600	0.492		2.7190883
345 346	68J	0	0.46775		2.58506823	257J	1050	0.5028		2.7787756
	96J	0	0.48825		2.69836357	330J	1000	0.5233		2.8920709
347	104J	0	0.4943	0.007354		335J	1200	0.5348		2.9556269
348	309J	0	0.4951	0.044548	2.7362208	363J	1600	0.54235		2.9973527
349	251J	0	0.49595		2.74091841	71J	700	0.5437		3.0048136
350	101J	0	0.49855		2.75528758	35F	400	0.54565	0.008627	3.0155905
351	22F	0	0.54615		3.01835385	342J	1500	0.54605	0.000919	
352	119J	0	0.55265	0.004879		122J	1950	0.55915	0.018738	
353	89J	50	0.55705		3.07859381	27F	1150	0.57115	0.137391	3.1565189
354	118J	50	0.56095		3.10014756	341J	1100	0.58995	0.003111	3.2604190
355	66J	0	0.5722		3.16232184	78J	1350	0.5946	0.022981	3.2861177
356	102J	50	0.5757		3.18166494	369J	1150	0.59635	0.044618	3.2957892
357	113J	0	0.5904	0.05176	3.262906	30F	850	0.60085	0.00799	3.3206589
	42J	0	0.6005		3.31872468	50F	450	0.60275	0.029911	3.3311595
358	25J	50	0.6009		3.32093532	52F	650	0.6164	0.092631	
359	39F	0	0.61175		3.38089896	46F	650	0.62165		3.4356123
360	242J	50	0.6227		3.44141525	5F	1400	0.62675		3.4637979
361	34F	0	0.6242		3.44970516	32F	900	0.65205		3.6036210
362	19F	0	0.62685		3.46435065	8F	1300	0.6534		3.6110819
363	24F	0	0.63345		3.50082623	43F	700	0.65635		3.6273854
364	31F	0	0.63845		3.52845924	53F	550	0.65655		3.6284907
365	29F	0	0.6568		3.62987239	41F	900	0.6704		3.7050341
366	60J	50	0.67235		3.71581106	12F	2200	0.6758		3.7227193
367	48J	50	0.68445		3.78268294	33F	550	0.704		3.8907280
368	56F	0	0.6891		3.80838165	23F	500	0.7054		3.8984652
	1F	0	0.6915		3.82164549	40F	1550	0.7145		3.9487573
369	57F	50	0.71305		3.94074377	55F	600 700	0.7159		3.95649459
370	27J	50	0.7249	0.015132	4.00623401	37F 319J	700 2000	0.7832 0.7864		4.32843492

Anexo II: Dados absolutos da Contagem de ovos por grama de fezes (OPG) subdivididos em dois grupos, baixo e alto OPG, Densidade Óptica (D.O), Desvio Padrão (SD) da D.O e Índice de Reatividade (IR), de bovinos de corte naturalmente infectados, categoria Desmamado para antígeno total de *H. placei*.

					ntigeno <i>na</i>	emonchus p			
Amostras	OPG BAIXO	DO	SD	IR	Amostras	OPG ALTO	DO	SD	IR
28D	0	0.25995	0.012233	1.43664027	129E	1050	0.21965	0.011102	1.2139182
46D	0	0.27355	0.061165	1.51180206	64D	300	0.2221	0.001697	1.22745837
92E	0	0.28235	0.031466	1.56043616	7D	400	0.48185	0.13435	1.27139486
2D	0	0.28335	0.045891	1.56596276	13D	450	0.23005	0.04278	1.27139486
87E	0	0.30285	0.032173	1.67373151	59D	400	0.23395	0.050275	1.29294861
106E	0	0.30985	0.033305	1.71241772	67D	500	0.2583	0.010041	1.42752137
110E	0	0.3134	0.02786	1.73203716	450C	550	0.2681	0.093126	1.48168208
108E	0	0.32475	0.038891	1.7947641	68D	1050	0.2688	0.001414	1.4855507
134E	0	0.35255		1.94840364	420C	1700	0.26995	0.053528	1.49190629
115E	0	0.357	0.031678	1.97299702	33D	500	0.28305	0.031113	1.56430478
460C	0	0.35865	0.07757	1.98211591	139E	750	0.35835	0.001485	1.98045793
125E	0	0.3784		2.09126631	98E	1050	0.3613		1.99676141
111E	0	0.38555	0.048154	2.13078152	136E	400	0.36655		2.02577607
88E	0	0.3969		2.19350845	463C	550	0.3709		2.04981679
99E	0	0.41205		2.27723648	100E	1150	0.39155		2.16394113
127E	0	0.4129		2.28193409	445C	1350	0.3942		2.17858663
105E	0	0.42635	0.002051	2.35626689	431C	1550	0.3955	0.006505	2.18577121
409C	0	0.4332		2.39412412	27D	300	0.4154	0.074176	2.2957506
123E	0	0.4333	0.068589	2.39467678	418C	1450	0.4196		2.31896233
113E	0	0.43545	0.044194	2.40655897	101E	550	0.4643		2.56600145
93E	0	0.4364		2.41180924	441C	850	0.47295		2.61380656
438C	0	0.45235	0.04179	2.49995855	140E	1200	0.47845		2.64420287
131E	0	0.4562		2.52123597	107E	500	0.5154		2.84841083
26D	0	0.46735		2.58285758	137E	300	0.53425		2.95258728
471C	0	0.47375		2.61822784	83E	700	0.55525		3.06864593
403C	0	0.4755	0.101541		121E	750	0.5659		3.12750424
118E	0	0.4767		2.63453132	112E	1000	0.5659		3.12750424
473C	0	0.4772	0.060811	2.63729462	53D	350	0.58075		3.20957429
44D	0	0.4783		2.64337388	130E	600	0.58925		3.25655041
442C	0	0.48025		2.65415075	23D	650	0.5942		3.28390709
84E	0	0.48575		2.68454707	20D	600	0.6131		3.38835987
439C	0	0.5118	0.089449	2.82851506	16D	300	0.6266	0.00099	3.462969
454C 411C	0	0.5126	0.006788	2.83293634	436C 425C	950	0.6437	0.213546	3.5574739
466C	0	0.54245	0.006576		425C 434C	1000 500	0.65045		3.59477847
81E	0	0.5457	0.105925		434C 43D	300	0.65685		3.63014872
119E	0	0.5523		3.05234245 3.07140923	453C	700	0.67295		3.71912702 3.75173397
469C	0	0.55575 0.55595		3.07251455	456C	750	0.67885 0.6945		3.8382253
448C	0			3.16342716	458C	450			3.87829316
427C	0	0.5724 0.5765	0.05176	3.18608623	40D	650	0.74395		4.11151578
109E	0	0.5907		3.26456398	18D	400	0.7493	0.013203	
413C	0	0.59755	0.03387		422C	700	0.7544		4.16926878
37D	0		0.073448		449C	900	0.7545		4.16982144
430C	0	0.61145		3.37924098	34D	400	0.7661		4.23393002
31D	0			3.42317746	472C	450	0.78485		4.33755382
465C	0	0.624		3.44859984	464C	700			4.33865914
65D	0			3.46960092	10.10	7.00	0.70303	0.010017	4.0000001-
462C	0	0.64075		3.54117042					
69D	0		0.020506						
51D	0			3.58676489					
24D	0			3.79953908					
36D	0			3.82606677					
17D	0			3.95594193					
50D	0			4.09990992					
11D	0			4.69899361					
		0.00020	0.100000	T.UUUUUUU					
35D	0	0.85085	0.077145	4.70230957					

Anexo III: Dados absolutos da Contagem de ovos por grama de fezes (OPG) subdivididos em dois grupos, baixo e alto OPG, Densidade Óptica (D.O), Desvio Padrão (SD) da D.O e Índice de Reatividade (IR), de bovinos de corte naturalmente s, categoria Sobreano para antígeno total de H. placei.

1424	infectados
1425	
1426	Amostras
1427	19H
1428	89Z 324B
1429	27Z
1430	122Z
1431	12Z 316B
1432	76H
1433	98Z 84Z
1434	76Z
1435	347B 60Z
1436	71Z
	35Z 45Z
1437	372B
1438	54Z
1439	312B 391B
1440	367B
1441	8Z 395B
1442	94Z
1443	14H 16Z
1444	63Z
1445	42H
1446	50Z 1H
1447	112Z
1448	30Z 20Z
1449	374B
1450	47H 107Z
1451	353B
1452	310B 59H
1453	393B
1454	88H
1455	125H 81H
1456	32H
1457	108H 93H
1458	338B
	117H 101H
1459	68H
1460	1Z
1461	52H 4H
1462	341B
1463	304B 67Z
1464	364B
1465	8H
1466	361B 385B
1467	23Z
1468	329B 333B
1469	399B
1470	377B 359B
	3335

1422

					tígeno <i>Haemo</i>				
Amostras	OPG BAIXO	DO	SD	IR	Amostras	OPG ALTO	DO	SD	IR
19H	0	0.31535	0.038749	1.74281404	11Z	350	0.3341	0.016688	1.846437
89Z	0	0.3216	0.024395	1.7773553	70Z	300	0.3939	0.008061	2.176928
324B	0	0.3268	0.001131	1.80609363	39Z	250	0.40315	0.037265	2.228049
27Z	0	0.36665	0.014354	2.02632873	47Z	350	0.4179	0.077923	2.30956
122Z	0	0.37455	0.048154	2.06998889	126Z	350	0.42335	0.017041	
12Z	0	0.39615	0.005303	2.1893635	91Z	350	0.4333	0.017112	
316B	0	0.39665	0.052043	2.1921268	113Z	450	0.4358	0.030759	
76H	0	0.4062			26Z	350			
				2.24490585			0.45515	0.030618	
98Z	0	0.4119	0.030971	2.27640749	6Z	350	0.5333	0.033517	
84Z	0	0.41245	0.026658	2.27944712	99Z	250	0.56695	0.064842	
76Z	0	0.41985	0.085065	2.32034398	105Z	300	0.5825	0.030264	3.219245
347B	0	0.4337	0.075802	2.39688742	40Z	450	0.602	0.184696	3.327014
60Z	0	0.43945	0.018031	2.42866538	80Z	500	0.37415	0.034719	2.067778
71Z	0	0.44	0.053882	2.43170501	42Z	600	0.63895	0.012162	3.531222
35Z	0	0.44215		2.44358721	328B	250	0.6314	0.010041	
45Z	0	0.4505		2.48973434	335B	250	0.58235	0.120845	
372B	0	0.482		2.66382231	340B	250	0.50255	0.011172	
54Z	0	0.50705	0.09355	2.8022637	356B	250	1.06145	0.007849	
312B	0	0.5156		2.84951615	354B	300	0.70405	0.030335	
391B	0	0.52565	0.175433	2.9050585	388B	300	0.6786		3.750352
367B	0	0.5257	0.037335	2.90533483	322B	400	0.74115	0.023688	
8Z	0	0.5269	0.043982	2.91196675	343B	400	0.67025	0.149977	3.70420
395B	0	0.52765	0.110662	2.9161117	31H	300	0.3881	0.015274	2.14487
94Z	0	0.52955	0.000636	2.92661225	87H	350	0.52075	0.01492	2.877978
14H	0	0.53035	0.038113	2.93103353	127H	400	0.6607		3.651420
16Z	0	0.53135		2.93656013	66H	550	0.40285	0.006788	
63Z	0	0.5411	0.117663	2.9904445	114H	600	0.58935	0.006152	
42H	0								
		0.5456		3.01531421	129H	850	0.58	0.011738	3.20542
50Z	0	0.54655		3.02056449					
1H	0	0.54775	0.006152	3.02719641					
112Z	0	0.548	0.044336	3.02857806					
30Z	0	0.54955	0.017678	3.03714429					
20Z	0	0.55485	0.040659	3.06643529					
374B	0	0.55665	0.069226	3.07638317					
47H	0	0.55815	0.018455	3.08467307					
107Z	0	0.5634		3.11368774					
353B	0	0.5639		3.11645104					
310B	0								
		0.57775		3.19299448					
59H	0	0.58185		3.21565355					
393B	0	0.5899	0.170625	3.2601427					
88H	0	0.5934	0.113066	3.2794858					
125H	0	0.60055	0.05572	3.31900101					
81H	0	0.604	0.029698	3.33806779					
32H	0	0.6131	0.03083	3.38835987					
108H	0	0.61875		3.41958517					
93H	0			3.47181156					
338B	0			3.50690549					
117H	0	0.63535		3.51132677					
101H	0			3.54421006					
68H	0			3.55498693					
1Z	0	0.6572	0.001556	3.63208303					
52H	0	0.6754	0.002828	3.73266719					
4H	0	0.6878	0.002687	3.80119706					
341B	0			3.83159337					
304B	0	0.6989		3.86254235					
67Z	0			3.89818893					
364B	0								
				4.03911729					
8H	0			4.05818407					
361B	0			4.11925302					
385B	0	0.77955	0.095954	4.30826282					
23Z	0	0.7872	0.063993	4.35054133					
329B	0	0.7966	0.051619	4.40249139					
333B	0			4.51661573					
399B	0			4.57436872					
377B	0			4.98388995					
359B	0								
		0.93	U.U9016/	5.13974014					

Anexo IV: Dados absolutos da Contagem de ovos por grama de fezes (OPG) subdivididos em dois grupos, baixo e alto OPG, Densidade Óptica (D.O), Desvio Padrão (SD) da D.O e Índice de Reatividade (IR), de bovinos de corte naturalmente infectados, categoria Adulto para antígeno total de *H. placei*.

			Cate		to para antí	geno <i>Haemon</i>					
A	Amostras	OPG BAIXO	DO	SD	IR	Amostras	OPG ALTO	DO	SD	IR	
	161I	0	0.2848	0.000424	1.57397634	4001	200	0.2006	0.001838	1.10863642	
	2081	0	0.324	0.021496	1.79061915	246A	400	0.241	0.004172	1.33191115	
	151I	0	0.3242	0.012587	1.79172447	265A	300	0.3728	0.036911	2.06031734	
	266A	0	0.4726	0.023617	1.96028584	4411	250	0.39305	0.011384	2.17223103	
	2181	0	0.3601	0.034648	1.99012949	415I	250	0.4278	0.02093	2.36428046	
	61G	0	0.3717	0.024395	2.05423807	142G	200	0.49855	0.008061	2.75528758	
	422I	0	0.3732	0.028143	2.06252798	172I	200	0.7139	0.017041	2.86796118	
	3791	0	0.37865	0.032032	2.09264796	134G	250	0.543	0.035072	3.00094505	
	433I	0	0.3828	0.013435	2.11558336	216I	300	0.55165	0.00891	3.04875016	
	80G	0	0.3907	0.009051	2.15924352	81G	550	0.73345	0.014354	4.05348646	
	229A	0	0.3973	0.030123	2.19571909	73G	200	0.73415	0.033729	4.05735508	
	87G	0	0.41205	0.056498	2.27723648	271A	300	0.8173	0.074105	4.51689206	
	254A	0	0.42835	0.06569	2.3673201						
	186I	0	0.44965	0.036275	2.48503672						
	273A	0	0.68095	0.019658	2.49111599						
	276A	0	0.45075	0.050982	2.49111599						
	4491	0	0.4581	0.003677	2.53173651						
	244A	0	0.47545	0.053528	2.62762306						
	380I	0	0.4784	0.015415	2.64392654						
	190I	0	0.48565	0.042921	2.68399441						
	123G	0	0.4879	0.011031	2.69642926						
	65G	0	0.5036	0.007	2.78319692						
	220I	0	0.50475	0.074741	2.78955251						
	257A	0	0.51175	0.036275	2.82823873						
	447I	0	0.52235	0.061872	2.88682071						
	383I	0	0.52795	0.071347	2.91776968						
	163I	0	0.5284	0.065902	2.92025666						
	2241	0	0.52845	0.018314	2.92053299						
	94G	0	0.53245	0.001273	2.94263939						
	262A	0	0.5363	0.044548	2.96391681						
	236A	0	0.54465	0.068519	3.01006394						
	233A	0	0.5456	0.037689	3.01531421						
	116G	0	0.56865	0.026658	3.1427024						
	240A	0	0.5705	0.114834	3.15292661						
	250A	0	0.5747	0.005303	3.17613834						
	238A	0	0.57855	0.065832	3.19741576						
	84G	0	0.58715	0.043628	3.24494454						
	184I	0	0.59755	0.003606	3.3024212						
	391I	0	0.59835	0.038396	3.30684249						
	3901	0	0.60055	0.015486	3.31900101						
	375I	0	0.6134	0.003606	3.39001785						
	129G	0	0.6419	0.00198	3.54752602						
	247A	0	0.6472	0.08061	3.57681701						
	181I	0	0.65455	0.031608	3.61743754						
	137G	0	0.66285	0.079691	3.66330833						
	269A	0	0.3547	0.021779	3.76333984						
	101G	0	0.6821	0.007495	3.76969543						
	72G	0	0.7035	0.009758	3.88796472						
	69G	0	0.7261	0.002687	4.01286593						
	113G	0	0.73185	0.063993	4.04464389						
	120G	0	0.732	0.014637	4.04547288						
	104G	0	0.7347	0.045679	4.06039471						
	77G	0	0.7565	0.005798	4.18087464						
	182I	0	0.77515	0.039669	4.28394577						
	231A	0	0.77575	0.065125	4.28726173						
	107G	0	0.79905	0.023405	4.41603157						
	189I	0	0.80405	0.016263	4.44366458						
					4.48400878						

Anexo V: Dados absolutos da Contagem de ovos por grama de fezes (OPG) subdivididos em dois grupos, baixo e alto OPG, Densidade Óptica (D.O), Desvio Padrão (SD) da D.O e Índice de Reatividade (IR), de bovinos de corte naturalmente infectados, categoria Pré-desmame para antígeno total de *O. radiatum*.

1525 1526		Ca	tegoria Pr	é-Desman	ne para antig	jeno Oesopha	gostomum radi	atum		
1527	Amostras	OPG BAIXO	DO	SD	IR	Amostras	OPG ALTO	DO	SD	IR
1528	56J	0	0.1488	0.073115	0.82235842	37F	700	0.21445	0.002192	1.18517986
1529	17J	0	0.1793	0.044336	0.99091979	122J	1950	0.23495	0.007637	1.29847521
1530	265J	0	0.2232	0.027153	1.23353763	35F	400	0.25405	0.010889	1.40403331
1531	34F	0	0.24215	0.009546	1.33826675	53F	550	0.257	0.015839	1.42033679
1532	22F	0	0.24515	0.000354	1.35484655	35J	950	0.2737	0.072832	1.51263105
1533	102J	50	0.2668	0.103662	1.47449749	43F	700	0.28435	0.01096	1.57148936
1534	42J	0	0.2926	0.04773	1.61708383	55F	600	0.30485	0.012728	1.68478471
1535	312J	0	0.3004	0.054377	1.66019133	343J	950	0.31125	0.071206	1.72015497
1536	104J	0	0.3053	0.044406	1.68727168	270J	2050	0.3124	0.026587	1.72651056
1537	24F	0	0.3279	0.011031	1.81217289	27F	1150	0.3136	0.005091	1.73314248
	242J	50	0.33005	0.040871	1.82405509	267J	850	0.3172	0.015698	1.75303825
1538	89J	50	0.3415	0.092631	1.88733469	41F	900	0.3228	0.10345	1.78398722
1539	31F	0	0.3658	0.042568		350J	2950	0.32315	0.091853	1.78592153
1540	48J	50	0.3669	0.010324	2.02771038	74J	1900	0.32535	0.059821	1.79808006
1541	1F	0	0.37055	0.023547	2.04788248	50F	450	0.33375	0.000495	
1542	39F	0	0.37805	0.013506	2.089332	40F	1550	0.3442		1.90225651
1543	119J	0	0.38105		2.10591181	30F	850	0.34625		1.91358605
1544	272J	0	0.40275		2.22583908	341J	1100	0.4309	0.006223	1.9406664
1545	326J	0	0.4109	0.018385		344J	1600	0.35115	0.050417	1.9406664
1546	57F	0	0.4132		2.28359207	33F	550	0.35835	0.003889	1.98045793
1547	60J	50	0.41995		2.32089664	332J	900	0.35955		1.98708986
1548	264J	0	0.42265		2.33581846	78J	1350	0.36835	0.026799	
1549	29F	0	0.43415		2.39937439	23F	500	0.3806		2.10342484
1550	27J	50	0.45115		2.49332663	52F	650	0.39565	0.008132	2.1866002
1551	337J	0	0.4763		2.63232068	5F	1400	0.39825		2.20096937
1552	251J	0	0.4794	0.059468	2.64945314	44F	650	0.39935		2.20704863
1553	25J	50	0.49355		2.72765457	71J	700	0.402		2.22169412
1554	356J	0	0.512		2.82962038	12F	2200	0.40915		2.26120933
1555	303J 56F	0	0.51485	0.030193	2.84537119 2.94595536	257J	1050	0.4108		2.27032822
1556	309J	0	0.53305 0.553		3.05621107	311J 353J	1050 1000	0.42755		2.36289881
1557	275J	0				51J	850	0.4406		2.43502097
1558	19F	0	0.55785		3.08301509 3.20156071	46F	650	0.44605		2.46514096
1559	268J	0	0.5793		3.29634194	335J	1200	0.48385		2.67404652
1560	240J	0	0.6316		3.49060201	8F	1300	0.4862 0.49055	0.009334	2.68703404 2.71107476
1561	273J	0	0.6451		3.56521114	28F	500	0.49033		2.80171104
1562	366J	0	0.66165		3.65667641	32F	900	0.5073		2.80364535
1563	118J	50	0.73695		4.07282957	319J	2000	0.5073		2.86996457
	96J	0	0.75093		4.15545227	363J	1600	0.53465		2.95479792
1564	113J	0	0.7626		4.21458691	330J	1000	0.53465		3.01089293
1565	66J	0	0.7020		4.46300769	367J	1600	0.5448		3.10208187
1566	101J	0	0.8407	0.130004		72J	850	0.6264		3.46186368
1567	57J	0	0.8617	0.012728	4.7622732	342J	1500	0.63375		3.50248421
1568	39J	50	0.87355		4.82776344	47J	950	0.66095	0.031203	3.65280779
1569	68J	0	0.89975	0.013081	4.97256042	369J	1150	0.83585		4.61941053
1570		,	5.55570	3.310001		15J	1300	0.8538		4.71861304

Anexo VI: Dados absolutos da Contagem de ovos por grama de fezes (OPG) subdivididos em dois grupos, baixo e alto OPG, Densidade Óptica (D.O), Desvio Padrão (SD) da D.O e Índice de Reatividade (IR), de bovinos de corte naturalmente infectados, categoria Desmamado para antígeno total de O. radiatum.

		Ca	ategoria De	esmamado	o para antíge	no Oesophag	gostomum radia	tum		
Amos	tras	OPG BAIXO	DO	SD	IR	Amostras	OPG ALTO	DO	SD	
93	E	0	0.21945	0.010253	1.21281287	140E	1200	0.20135	0.032103	1.11
460	C	0	0.2214	0.042002	1.22358975	136E	400	0.25095	0.01987	1.38
99	E	0	0.2227	0.00099	1.23077433	422C	700	0.26295	0.0746	1.45
118	SE	0	0.2328	0.019658	1.28659302	137E	300	0.2731	0.03677	1.50
108		0	0.2413	0.041154	1.33356914	83E	700	0.27915	0.032951	1.54
119		0	0.2422	0.005586	1.33854308	420C	1700	0.2887	0.013859	1.59
409		0	0.2558		1.41370487	139E	750	0.29735	0.001556	
438		0			1.52064462	121E	750	0.2989	0.003182	
35		0	0.2934		1.62150511	107E	500	0.32195		
109		0	0.30505		1.68589003	436C	950	0.339		
430		0	0.3317		1.83317398	431C	1550	0.38155	0.092843	
81		0		0.170483		458C	450	0.3826	0.076933	
110		0	0.34995		1.93403447	98E	1050	0.3869	0.039174	
115		0	0.3664		2.02494708	129E	1050		0.011809	
473		0		0.014425		449C	900		0.051619	
84		0			2.04567184	16D	300			
134		0	0.3852		2.12884721	101E	550	0.41765		
92		0	0.39685		2.19323212	100E	1150	0.4414		
15		0	0.39805		2.19986405	67D	500	0.4471	0.00792	
106		0	0.4185		2.31288306	112E	1000	0.45225	0.018738	
462		0	0.42165		2.33029186	453C	700	0.46225	0.016758	
113		0	0.43355		2.39605843	68D	1050	0.4623		
123		0	0.4357		2.40794062	450C	550	0.47635		
87		0	0.44585		2.46403564	130E	600	0.49765		
111		0	0.44605		2.46514096	34D	400	0.5014		
105		0	0.44885		2.48061544	20D	600	0.531	0.070994	
454		0			2.49360296	18D	400	0.53325	0.049144	
471		0	0.4553		2.51626203	434C	500	0.57595	0.003889	
439		0	0.46655	0.016758		445C	1350	0.5777	0.048508	
125		0	0.47045		2.59999005	59D	400	0.5784		
427		0	0.4735		2.61684619	425C	1000	0.58175	0.005303	
131		0	0.48665		2.68952101	472C	450	0.60625	0.081812	
465		0	0.4934		2.72682557	53D	350	0.62035	0.004879	
88		0	0.4997		2.76164317	43D	300	0.6429	0.022486	
411		0	0.51065		2.82215946	40D	650	0.6429	0.014142	
50		0	0.52325		2.89179465	418C	1450	0.649		
403		0			2.89428162	456C	750		0.017961	_
442		0			2.90616382	23D	650		0.016263	
31		0			2.95341627	13D	450		0.015698	
11		0			3.06505364	464C	700		0.035992	_
17		0			3.13855745	33D	500		0.012728	
51		0			3.17365137	64D	300		0.006718	
127		0			3.26235334	441C	850		0.013152	
65		0			3.26345866	27D	300		0.010182	
469		0	0.5915		3.26898526	7D	400		0.026658	
413		0			3.28142012	463C	550	0.81825	0.022557	4.52
466		0			3.28363076					-
448		0			3.49225999					-
24		0	0.6743		3.72658793					-
36		0			3.84568621					-
69		0	0.7027		3.88354344					-
46		0			3.89957058					-
37		0			3.95400762					-
20		0			4.04961784					-
44		0	0.75435		4.16899245					-
28	D D	0	0.7554 0.775		4.17479538 4.28311678					

1571

1572

Anexo VII: Dados absolutos da Contagem de ovos por grama de fezes (OPG) subdivididos em dois grupos, baixo e alto OPG, Densidade Óptica (D.O), Desvio Padrão (SD) da D.O e Índice de Reatividade (IR), de bovinos de corte naturalmente infectados, categoria Sobreano para antígeno total de *O. radiatum*.

1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1647 1648
1648 1649
1648 1649 1650
1648 1649 1650 1651
1648 1649 1650 1651 1652
1648 1649 1650 1651
1648 1649 1650 1651 1652
1648 1649 1650 1651 1652 1653 1654 1655
1648 1649 1650 1651 1652 1653 1654
1648 1649 1650 1651 1652 1653 1654 1655 1656
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
1648 1649 1650 1651 1652 1653 1654 1655 1656
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1660 1661 1662 1663 1664
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1660 1661 1662 1663 1664 1665 1666
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1668 1660 1661 1662 1663 1664 1665 1666
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1668 1661 1662 1663 1664 1665 1666 1667 1668
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1668 1660 1661 1662 1663 1664 1665 1666

					no Oesophago				
Amostras	OPG BAIXO	DO	SD	IR	Amostras	OPG ALTO	DO	SD	IR
89Z	0	0.3253		1.79780373	343B	400	0.4788	0.17911	
19H	0			2.04788248	42Z	600	0.57725	0.151179	
60Z	0			2.07247586	66H	550	0.58965	0.012304	
353B	0			2.31454104	40Z	450	0.60055	0.090298	
347B	0	0.4699		2.59695042	39Z	250	0.6023	0.041295	
122Z	0	0.4728		2.61297757	31H	300	0.6188	0.039881	3.4198
71Z	0	0.47485	0.820597	2.6243071	11Z	350	0.6419	0.046669	
316B	0	0.4786		2.64503186	91Z	350	0.6594	0.09051	
395B	0			2.65967736	340B	250	0.6708		
16Z	0	0.53135	0.03882	2.93656013	87H	350	0.68615	0.02086	
372B	0	0.5354	0.000495	2.95894287	354B	300	0.6986	0.008485	3.86088
20Z	0	0.53855	0.001909	2.97635167	129H	850	0.7268	0.006505	4.01673
76H	0	0.5502	0.004172	3.04073659	26Z	350	0.7297	0.01994	4.0327
27Z	0	0.55125	0.015203	3.04653952	114H	600	0.7373	0.000849	4.07476
98Z	0	0.56185	0.046033	3.1051215	70Z	300	0.7418	0.038042	4.09963
63Z	0	0.57015	0.066256	3.1509923	388B	300	0.74515	0.079832	4.118
393B	0	0.57015	0.112996	3.1509923	127H	400	0.77755	0.004455	4.29720
50Z	0	0.578	0.0239	3.19437613	328B	250	0.7779	0.118228	4.29914
12Z	0	0.58845	0.056074	3.25212912	322B	400	0.8354	0.035214	4.61692
76Z	0	0.5924		3.2739592	80Z	500	0.8542	0.05968	
324B	0	0.6105		3.3739907	105Z	300	0.8546	0.115612	
30Z	0	0.61425		3.39471546	47Z	350	0.86245	0.199899	
312B	0	0.61465		3.3969261	335B	250	0.93745	0.240204	
107Z	0	0.62155		3.43505966	126Z	350	0.99705	0.076721	
32H	0			3.54780235	99Z	250	1.0027	0.070721	
361B	0			3.55167097	356B	250	1.0378	0.000707	
125H	0			3.62572744	113Z	450		0.000707	
	0						1.14835		
81H				3.66551898	6Z	350	1.37585	0.154786	7.60377
310B	0		0.016193						
367B	0			3.72686426					
304B	0	0.6788		3.75145764					
94Z	0			3.75974754					
84Z	0	0.6841	0.038749	3.78074863					
68H	0	0.68555	0.016617	3.78876221					
54Z	0	0.6955	0.116673	3.8437519					
338B	0	0.70155	0.116178	3.87718784					
374B	0	0.7161	0.007849	3.95759991					
93H	0	0.71685	0.010536	3.96174486					
47H	0	0.71885	0.011526	3.97279806					
117H	0	0.7252	0.029274	4.00789199					
88H	0	0.7253	0.064064	4.00844465					
359B	0	0.72745	0.016051	4.02032684					
364B	0	0.7298	0.098712	4.03331436					
4H	0		0.031537	4.035525					
59H	0	0.74175		4.09935726					
52H	0			4.09990992					
341B	0			4.11980568					
8Z	0			4.12035834					
101H	0			4.14191209					
8H	0			4.14439906					
112Z	0			4.15821557					
14H	0			4.17838767					
385B	0			4.21182361					
108H	0			4.21983719					
1Z	0			4.25216781					
42H	0			4.29472265					
35Z	0			4.43178238					
67Z	0			4.45444145					
391B	0		0.235325						
23Z	0			4.46604732					
45Z	0			4.48539043					
1H	0			4.53402453					
381B	0	0.8559	0.057276	4.73021891					
399B	0	0.91765	0.143472	5.0714866					
333B	0	1.02725	0.033446	5.67720221					
377B	0	1.06495	0.100763	5.88555512					
329B	0			6.21632227					

Anexo VIII: Dados absolutos da Contagem de ovos por grama de fezes (OPG) subdivididos em dois grupos, baixo e alto OPG, Densidade Óptica (D.O), Desvio Padrão (SD) da D.O e Índice de Reatividade (IR), de bovinos de corte naturalmente infectados, categoria Adulto para antígeno total de *O. radiatum*.

1074
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710

		_			Oesophago				
Amostras	OPG BAIXO	DO	SD	IR	Amostras	OPG ALTO	DO	SD	IR
1611	0	0.3905	0.05374	2.1581382	246A	400	0.22195	0.080186	1.2266293
422I	0	0.4552	0.022627	2.51570937	4001	200	0.2983	0.007495	1.64858547
3791	0	0.46035	0.084641	2.54417137	415I	250	0.2983	0.007495	1.64858547
2081	0	0.46265	0.000636	2.55688255	265A	300	0.46275	0.130815	2.5574352
186I	0	0.46525	0.030476	2.57125172	4411	250	0.5813	0.079762	3.21261392
80G	0	0.48105	0.001485	2.65857204	271A	300	0.6291	0.032668	3.4767855
151I	0	0.49615	0	2.74202373	142G	200	0.6919	0.015415	3.8238561
3801	0	0.5069	0.029416	2.80143471	2161	300	0.80695	0.011667	4.4596917
2181	0			2.82381745	134G	250			4.4801401
4331	0	0.5119	0.026304	2.82906772	81G	550			4.5445250
240A	0			2.94927132	1721	200			4.8288687
3831	0			2.98547056	73G	200			5.3613568
1901	0	0.54965		3.03769695		200	0.0701	0.012111	0.0010000
2201	0			3.03935493					
163I	0	0.558		3.08384408					
87G	0	0.56355		3.11451673					
4471	0			3.13496515					
229A	0			3.16038753					
236A	0			3.20156071					
65G	0	0.5882	0.059185	3.25074747					
61G	0	0.5953	0.061306	3.28998635					
123G	0	0.6008	0.000566	3.32038266					
4491	0	0.6066	0.038749	3.35243696					
1841	0	0.62475	0.001202	3.45274479					
94G	0			3.45495543					
233A	0			3.58897553					
247A	0	0.6677		3.69011236					
3901	0			3.75339195					
2241	0	0.68405							
116G	0			3.81335559					
69G	0			3.85231813					
129G	0	0.69705							
	-			3.91615039					
101G	0	0.71005		3.92416396					
1811	0		0.090015	4.007063					
72G	0			4.14053044					
4171	0	0.74975	0.014071	4.14357007					
375I	0	0.7694	0.003889	4.25216781					
104G	0	0.77345	0.01888	4.27455055					
3911	0	0.77575	0.021072	4.28726173					
84G	0	0.78155	0.064417	4.31931603					
231A	0	0.782	0.023405	4.321803					
77G	0	0.79125	0.001202	4.37292407					
1891	0	0.7969	0.008061	4.40414937					
113G	0			4.54065645					
107G	0			4.55723626					
120G	0			4.58569826					
182I	0	0.84515		4.67080793					
226A	0			4.78659025					
137G	0								
				5.29862996					
238A	0	0.9701		5.36135689					
257A	0			5.36494918					
250A	0			6.27573324					
244A	0	1.19545	0.310349	6.60677672					
269A	0	1.20155	0.586686	6.64048899					
254A	0	1.24085	0.140573	6.85768446					
276A	0	1.3376	0.164332	7.39238324					
262A	0	1.4259	0.349876	7.88038222					
266A	0	1.64005		9.0639041					
	0			9.69089713					