
Universidade Federal de Goiás
Instituto de Informática

Thiago Borges de Oliveira

Efficient Processing of Multiway Spatial
Join Queries in Distributed Systems

Goiânia, GO
2017

Thiago Borges de Oliveira

Efficient Processing of Multiway Spatial
Join Queries in Distributed Systems

Thesis presented to the postgraduate program of Instituto
de Informática of Universidade Federal de Goiás, as a par-
tial fulfillment of the requirements for the Ph.D. degree in
Computer Science.
Concentration Area: Computer Science.
Advisor: Prof. Fábio Moreira Costa, Ph.D.
Co-Advisors: Prof. Leslie Richard Foulds, Ph.D.

Prof. Vagner José do S. Rodrigues, Ph.D.

Goiânia, GO
2017

Ficha de identificação da obra elaborada pelo autor, através do
Programa de Geração Automática do Sistema de Bibliotecas da UFG.

CDU 004

de Oliveira, Thiago Borges
 Efficient Processing of Multiway Spatial Join Queries in Distributed
Systems [manuscrito] / Thiago Borges de Oliveira. - 2017.
 156 f.: il.

 Orientador: Prof. Dr. Fábio Moreira Costa; co-orientador Dr.
Leslie Richard Foulds; co-orientador Dr. Vagner José do Sacramento
Rodrigues.
 Tese (Doutorado) - Universidade Federal de Goiás, Instituto de
Informática (INF), Programa de Pós-Graduação em Ciência da
Computação em rede (UFG/UFMS), Goiânia, 2017.
 Bibliografia. Apêndice.
 Inclui tabelas, algoritmos, lista de figuras, lista de tabelas.

 1. Distributed Multiway Spatial Join. 2. Cost-based Optimizer. 3.
Query Scheduling. 4. Histograms. I. Costa, Fábio Moreira, orient. II.
Título.

All rights reserved. Total or partial reproduction of this work without proper
permission of the university, the author, and the advisor is prohibited.

Thiago Borges de Oliveira

Received his master’s in Computer Science with emphasis in Distributed
Systems from UFG - Universidade Federal de Goiás in 2010. He is currently a
professor in the computer science bachelor course at Universidade Federal de
Goiás, Regional Jataí. He worked previously as a software engineer for several
years in the agribusiness industry. His current research interests are the design
and development of large-scale distributed systems for spatial data processing.

To Beatriz, my beloved daughter. I hope you always find a matter to wisely use
your immense creativity and intelligence.

Acknowledgements

First and foremost, I would like to express my sincere thanks to my advisor, Prof.
Fabio M. Costa, for all his guidance, support, trust along these years, and for the flexibility
when I decided to move to Jataí.

I am deeply indebted to my co-advisor, Prof. Leslie R. Foulds, for all his guidance
and patience in our meetings, especially when the idiom became a challenge frommy side.
Thank you for gently holding the throttle to wait for me.

I am especially grateful to my co-advisor Prof. Vagner José do Sacramento
Rodrigues, for his support and guidance in the development of the main subject of this
thesis.

My sincere thanks to Prof. Humberto José Longo, for helping and sharing his
experience with the optimization methods, for the interest in the early drafts of the integer
model, and for sharing themwith Prof. Leslie. I’m proud of the development of this subject
in this thesis, and his help was fundamental.

My sincere and special thanks to the thesis committee, Prof. Kelly R. Braghetto,
Prof. Claudio N. de Meneses, Prof. Wellington Santos Martins, and Prof. Kleber Vieira
Cardoso, for the invaluable suggestions and feedback.

I am fortunate to have the commitment and help of my wife, Cristiane de Sateles
Valente, during all these years since I proposedmyself this challenge.Without her attention
and support with our family, this work would be indescribably challenging. Now we can
enjoy the benefits together!

I am also grateful to my friends and work colleagues that supported and encour-
aged me in concluding this thesis. Thank you all for the support and for pushing me up.

I am also indebted to the two cloud providers that provided the necessary envi-
ronment to perform the experiments presented in this work. Microsoft Azure supported
this work through the Azure4Research program until 2015. Amazon supported the final
round of experiments (2016-2017), providing the necessary computational environment
through the AWS Cloud Credits for Research program.

I learned to walk; since then have I let myself run. I learned to fly; since
then I do not need pushing in order to move from a spot.

Friedrich Nietzsche,
Thus Spoke Zarathustra, Part 1, Reading and Writing.

Abstract

de Oliveira, Thiago Borges. Efficient Processing of Multiway Spatial Join
Queries in Distributed Systems. Goiânia, GO, 2017. 156p. PhD Thesis. Ins-
tituto de Informática, Universidade Federal de Goiás.

Multiway spatial join is an important type of query in spatial data processing, and its
efficient execution is a requirement to move spatial data analysis to scalable platforms
as has already happened with relational and unstructured data. In this thesis, we provide
a set of comprehensive models and methods to efficiently execute multiway spatial join
queries in distributed systems. We introduce a cost-based optimizer that is able to select a
good execution plan for processing such queries in distributed systems taking into account:
the partitioning of data based on the spatial attributes of datasets; the intra-operator level
of parallelism, which enables high scalability; and the economy of cluster resources by
appropriately scheduling the queries before execution. We propose a cost model based on
relevant metadata about the spatial datasets and the data distribution, which identifies the
pattern of costs incurred when processing a query in this environment. We formalized the
distributed multiway spatial join plan scheduling problem as a bi-objective linear integer
model, considering the minimization of both the makespan and the communication cost
as objectives. Three methods are proposed to compute schedules based on this model
that significantly reduce the resource consumption required to process a query. Although
targeting multiway spatial join query scheduling, these methods can be applied to other
kinds of problems in distributed systems, notably problems that require both the alignment
of data partitions and the assignment of jobs to machines. Additionally, we propose a
method to control the usage of resources and increase system throughput in the presence
of constraints on the network or processing capacity. The proposed cost-based optimizer
was able to select good execution plans for all queries in our experiments, using public
datasets with a significant range of sizes and complex spatial objects. We also present an
execution engine that is capable of performing the queries with near-linear scalability with
respect to execution time.

Keywords
Distributed Multiway Spatial Join, Cost-based Optimizer, Job Scheduling, Histograms

Resumo

de Oliveira, Thiago Borges. Processamento Eficiente de Consultas de Multi-
Junção Espacial em Sistemas Distribuídos. Goiânia, GO, 2017. 156p. Tese de
Doutorado. Instituto de Informática, Universidade Federal de Goiás.

A multi-junção espacial é um tipo importante de consulta usada no processamento de
dados espaciais e sua execução eficiente é um requisito para mover a análise de dados
espaciais para plataformas escaláveis, assim como aconteceu com dados relacionais e não
estruturados. Nesta tese, propomos um conjunto demodelos e métodos para executar efici-
entemente consultas de multi-junção espacial em sistemas distribuídos. Apresentamos um
otimizador baseado em custos que seleciona um bom plano de execução levando em consi-
deração: o particionamento de dados com base nos atributos espaciais dos datasets; o nível
de paralelismo intra-operador que proporciona alta escalabilidade; e o escalonamento das
consultas antes da execução que resulta em economia de recursos computacionais. Propo-
mos um modelo de custo baseado em metadados dos datasets e da distribuição de dados,
que identifica o padrão de custos incorridos no processamento de uma consulta neste ambi-
ente. Formalizamos o problema de escalonamento de planos de execução da multi-junção
espacial distribuída como ummodelo linear inteiro bi-objetivo, que minimiza tanto o custo
de processamento quanto o custo de comunicação. Propomos três métodos para gerar es-
calonamentos a partir deste modelo, os quais reduzem significativamente o consumo de
recursos no processamento das consultas. Embora projetados para o escalonamento da
multi-junção espacial, esses métodos podem também ser aplicados a outros tipos de pro-
blemas em sistemas distribuídos, que necessitam do alinhamento de partições de dados
e da distribuição de tarefas a máquinas de forma balanceada. Além disso, propomos um
método para controlar o uso de recursos e aumentar a vazão do sistema na presença de
restrições nas capacidades da rede ou de processamento. O otimizador proposto foi capaz
de selecionar bons planos de execução para todas as consultas em nossos experimentos, as
quais usaram datasets públicos com uma variedade significativa de tamanhos e de objetos
espaciais complexos. Apresentamos também umamáquina de execução, capaz de executar
as consultas com escalabilidade próxima de linear em relação ao tempo de execução.

Palavras–chave
Multi-junção Espacial Distribuída, Otimizador Baseado em Custos, Escalonamento de

Tarefas, Histogramas

Contents

List of Figures 14

List of Tables 16

List of Algorithms 17

List of Symbols 18

1 Introduction 19
1.1 Thesis Scope 21
1.2 Primary Contributions 23
1.3 Thesis Outline 24

2 Multiway Spatial Join Processing 25
2.1 Spatial Data 25
2.2 Spatial Analysis 27
2.3 Spatial Join 27

2.3.1 Distributed Processing of Spatial Join 28
2.3.2 Clone Join 29
2.3.3 Reference Point Method 31

2.4 Multiway Spatial Join 32
2.4.1 Plan Enumeration 33
2.4.2 Estimating the Cost of Execution Plans 34
2.4.3 Plan Scheduling 38
2.4.4 Plan Selection 38
2.4.5 Query Execution 39

2.5 Final Considerations 40

3 A Cost Model for Distributed Multiway Spatial Join Queries 42
3.1 Multidimensional Grid Histograms 43
3.2 Split Method 46
3.3 Gathering Metadata for Histogram Cells 47
3.4 Building Intermediate Histograms 48
3.5 Estimating the Cost of an Execution Plan 52
3.6 Cost Model Evaluation 54

3.6.1 Evaluation of the Hash Method 56
3.6.2 Evaluation of the Split Method 58
3.6.3 Evaluation of Join Selectivity 59
3.6.4 Evaluation of Join Selectivity per Histogram Cell 61

3.7 Final Considerations 62

4 Scheduling Multiway Spatial Joins Queries 64
4.1 Linear Programming Background 65
4.2 Lagrangian Relaxation 67
4.3 Problem Formulation 68
4.4 Related Problems 70
4.5 Simplified Model 71
4.6 Linear Programming Relaxation for SM 73
4.7 Lagrangian Relaxation for SM 73
4.8 Repairing Heuristic 76
4.9 A Greedy Algorithm for SM 78
4.10 Complexity of the Algorithms 79
4.11 Evaluation 79

4.11.1 Instances Characterization and the Affect of 𝑓 81
4.11.2 Quality of Generated Schedules 82
4.11.3 Comparison of the Execution Times 84
4.11.4 Performance of SM Schedules in FM 85

4.12 Broader Applicability of FM 87
4.13 Final Considerations 88

5 Controlling the Consumption of Computational Resources in Query
Scheduling 90
5.1 Introduction to Parametric Analysis 91
5.2 Finding Bounds for PA 93
5.3 Bounds for a Simple Numerical Example 95
5.4 Useful Results for PA 95
5.5 Bounds on 𝑍∗(𝑓) 97
5.6 The PA Process 98
5.7 A Numerical Example of PA 100
5.8 Upper Bound of 𝑍∗(𝑓) Using Approximate Schedules 102
5.9 Final Considerations 104

6 Selection and Execution of Multiway Spatial Join Query Plans 106
6.1 Selection of Distributed Execution Plans 106
6.2 Query Execution Engine 108
6.3 Evaluation 110

6.3.1 Evaluation of the Communication Cost Estimate 112
6.3.2 Evaluation of the Selection of Distributed Execution Plans 113
6.3.3 Resource Consumption of Schedules 116
6.3.4 Resource Consumption Along Query Execution 117
6.3.5 Scalability of Query Execution 119

6.4 Final Considerations 120

7 Related Work 122
7.1 Foundation Work on Spatial Query Optimization 122
7.2 MapReduce-based Work 123
7.3 Spark-based Work 125
7.4 Systems Designed from Scratch 126
7.5 Comparison of Execution Times 127
7.6 Overall Comparison of Features 129
7.7 Final Considerations 130

8 Conclusion 131
8.1 Summary of Contributions 131
8.2 Limitations of our Approach 133
8.3 Future Work 134

Bibliography 136

A Detailed Results for Schedule Methods 145
A.1 Challenging Values of 𝑓 145
A.2 Characteristics of Schedules Computed 146
A.3 Execution Times of GR, LP and LR for all Queries 148

B A Complete Example of Parametric Analysis 150
B.1 Finding Bounds for PA 150
B.2 Starting the PA Process 151
B.3 The Second Iteration 152
B.4 The Last Iteration 153
B.5 The Six Breakpoints 155

List of Figures

1.1 Distributed query processing phases and their interaction with the
cost model. 22

2.1 Illustration of the Clone Join Partitioning Method. Adapted from [70]. 30
2.2 Illustration of the Reference Point Method. 31
2.3 Multiway spatial join query types. 32
2.4 Alternate execution plans to process a multiway spatial join query. 33
2.5 Fire warnings dataset for the Brazilian cerrado biome. 35

3.1 Multidimensional histogram for a two-dimensional dataset of politi-
cal limits of Brazilian municipalities. 45

3.2 A spatial object hashed using the MBR Center method and the
Proportional Overlap method. 48

3.3 Illustration of the error introduced by MBR on the average length for
a 2d object (𝑜). 50

3.4 Improvement of the selectivity estimation using the PO hashing
method. 57

3.5 Improvement of selectivity estimation for datasets Counties and
Rivers. 58

4.1 Schedule makespan and communication cost for representative
tested instances using distinct values of 𝑓 . 82

4.2 Gap between each schedule provided by GR, LP, and LR and a
know lower bound of 𝑍∗

𝑆𝑀 . 83
4.3 Execution time for GR, LP, and LR. (𝑎) shows the minimum execu-

tion time, (𝑏) the average, and (𝑐) the maximum execution time for
all 𝐽 and 𝑀 queries. 85

4.4 Gap between each schedule provided by GR, LP, and LR and a
know lower bound of 𝑍∗

𝐹 𝑀 . 86

5.1 The parametric analysis of 𝑀𝑝𝑎. 96
5.2 Evaluation of PA and its three cases. 98
5.3 First iteration of the PA for 𝑀𝑝𝑎. 101
5.4 Shape of 𝑍∗(𝑓) for 𝑀𝑝𝑎 and the upper bound defined using approx-

imate schedules. (B) is the zoomed region highlighted in (A), with
the point 𝑃 of the approximate schedule and its gap. 103

5.5 Shape of 𝑍∗(𝑓) for 𝐽3 with 𝑚 = 4 and the upper bound defined
using approximate schedules. (B) and (C) are the zoomed regions
highlighted in (A). 104

6.1 Modules of the execution engine and their interactions. 109
6.2 The flow of jobs inside the Worker module. 110
6.3 Estimated and real communication costs of multiway queries. 113
6.4 Average communication per machine and error bars showing the

minimum and maximum communication costs of all machines for
queries 𝑀1 to 𝑀6. 113

6.5 Execution time for each query plan compared with the selected plan
for a query. 114

6.6 Execution time and cost of each plan for 𝑀8, using eight machines
(𝑚 = 8). 115

6.7 Runtime measurements for 𝑀𝑝6
6 scheduled by LR method. 117

6.8 Runtime metrics for 𝑀𝑝1
7 scheduled by LR method. 118

6.9 Scalability of the execution engine, running multiway spatial join
queries. 119

7.1 Comparison of the execution times for 𝑀9, 𝑀10, and 𝑀11. 128

A.1 Schedule costs for tested instances using distinct values of 𝑓 for
each step of queries from 𝑀1 to 𝑀6. 146

A.2 Schedule costs for tested instances using distinct values of 𝑓 for
queries 𝐽1 to 𝐽20. 147

B.1 Uncertainty area in the first iteration of the parametric analysis for
𝑀𝑝𝑎. 152

B.2 Reduction of the area of uncertainty in the second iteration of the
parametric analysis for 𝑀𝑝𝑎. 153

B.3 Breakpoints identified in the last iteration of the parametric analysis
for 𝑀𝑝𝑎. 154

B.4 The parametric analysis of 𝑀𝑝𝑎. 155

List of Tables

3.1 Datasets used in experiments. 55
3.2 Spatial Join queries used in experiments. 55
3.3 Histogram size determined by Split-Method and the number of

wrong estimated objects (WEO) per dataset. 59
3.4 Estimated Cardinality Results for Join Queries using the IHWAF

and MP methods. 60
3.5 Statistics for Estimated Cardinality Results per Histogram Cell for

Join Queries. 61

4.1 Additional multiway instances to provide intermediate results and
the number of jobs 𝑛 of each step. 80

4.2 Number of jobs for each query 𝐽 . 80
4.3 Average and standard deviation for gaps in Figure 4.2. 84
4.4 Average and standard deviation for gaps in Figure 4.4. 87

5.1 The communication costs for the SM instance. 95
5.2 The 𝑓 ’s examined in the parametric analysis of 𝑀𝑝𝑎. 102
5.3 A summary of the parametric analysis of f for 𝑀𝑝𝑎. 102

6.1 Additional datasets used in the experiments. 111
6.2 Multiway spatial join queries used in the experiments. 111
6.3 Top 10 plans for 𝑀8 and their respective rank based on the esti-

mated costs. 115
6.4 Resource consumption for 𝑀7 and 𝑀8 in a cluster with 32 cores,

eight machines. 116

7.1 Summary of related work and its capabilities 129

A.1 Challenging values of 𝑓 used for join queries 𝐽 . 145
A.2 Challenging values of 𝑓 for multiway queries 𝑀 145
A.3 Execution times to produce a schedule for 𝑚=4, 8, and 16. 148
A.4 Execution times to produce a schedule for 𝑚=32 and 64. 149

B.1 The 𝑓s examined in the parametric analysis of 𝑀𝑝𝑎. 155
B.2 A summary of the parametric analysis of 𝑓 for 𝑀𝑝𝑎 155
B.3 Values of 𝑤𝑗 and 𝑐𝑖𝑗 in the 𝑀𝑝𝑎 instance. 156

List of Algorithms

3.1 Dataset-Metadata and Histogram-Cell data structures. 44
3.2 Procedure Split-Method that defines the number of cells for multidimen-

sional grid histograms. 46
3.3 Procedure Build-Intermed-Histogram that generates an intermediate

metadata for a spatial join between datasets 𝐴 and 𝐵. 49
3.4 Procedure Estimate-Cardinality-With-AvgLengthFix to estimate the

resulting cardinality for an intersection between two histogram cells 𝑎 and 𝑏. 52
3.5 Procedure Estimate-Plan-Cost to estimate the costs of an execution plan

𝑃 . 53
4.1 Procedure Solve-LR-Relaxation to compute a feasible solution to SM

through LR-relaxation. 75
4.2 Procedure Repair-Partial-Solution to repair a partial solution 𝑥 to SM. 77
4.3 Procedure Schedule-Unassigned-Jobs to schedule unassigned jobs in 𝑆𝑢. 77
4.4 Procedure Improve-Repaired-Solution to improve the feasible solution �̂�. 78
6.1 Procedure Select-Plan to select a plan to execute a query 𝑄. 108

List of Symbols1

⋈ Spatial join operator.
𝜃 Spatial predicate, such as intersects, distance.
𝑑 Number of dimensions in a spatial dataset.

̄̄𝑎, ̄̄𝑏 Cardinality of 𝑎, 𝑏.
𝑙𝑥𝑘 Average length of 𝑥 in dimension 𝑘, when 𝑥 is a histogram cell, or length of

𝑥 in dimension 𝑘, otherwise.
𝑓 𝑞 A weight to specify the desired emphasis on a balanced execution while

scheduling a query 𝑞, 0 ≤ 𝑓 𝑞 ≤ 1.
̄𝑐𝑖𝑏 Communication cost incurred if cell 𝑏 is moved to machine 𝑖.
̂𝑐𝑖𝑎 Communication cost incurred if cell 𝑎 is moved to machine 𝑖.

𝑤𝑗 Processing cost of job 𝑗.
𝜎2 Standard deviation.
𝑓 A weight to specify the desired emphasis on a balanced execution while

scheduling a step of an execution plan for a multiway spatial join query.
𝑚 Number of machines (or servers) used to schedule or execute a query.
𝐽 Set of jobs to be scheduled in a step of an execution plan.
𝑛 Number of jobs in a step of an execution plan.
𝑢𝑖 Residual load in machine 𝑖 that reduces its processing capacity.

̂𝑦𝑖𝑎 Boolean variable that indicates if the cell 𝑎 is processed on machine 𝑖.
̄𝑦𝑖𝑏 Boolean variable that indicates if the cell 𝑏 is processed on machine 𝑖.

𝑥𝑖𝑗 Boolean variable that indicates if the job 𝑗 is processed on machine 𝑖.
𝑥0 Variable that represents the completion time of the latest processed job by any

machine, i.e., the makespan.
𝑐𝑖𝑗 Communication cost incurred when processing job 𝑗 on machine 𝑖.
𝜇 Vector of Lagrangian multipliers, defined for each job 𝑗, 𝜇𝑗 .
𝑓 ′ Upper bound on 𝑓 for a given query scheduling instance.

1Global symbols used in the text, in order of their appearance.

CHAPTER 1
Introduction

The amount of spatial data has significantly increased with the popularization of
GPS-enabled devices. Spatial data, such as geotagged images, IoT (Internet of Things)
and Smart Cities sensor data, open data and census data, are continuously collected
and organized in thematic datasets1 to support decision-making and to improve market
intelligence and logistics efficiency in both the private and public sectors.

Spatial data is a type of multidimensional data, a complex data type that is
handled by Relational Database Management Systems (RDBMS) through the use of
queries with spatial predicates [74]. An important type of query is the spatial join,
which finds correlated objects in two or more datasets by applying some predicate like
intersection or proximity [10]. Spatial join can be classified as “simple” when only two
datasets are processed, or multiway (“complex”) when processing more than two datasets
in the same query [57].

Multiway spatial join queries are important in several application fields, including
geography (e.g., to find animal species living in preservation areas that were damaged by
fire), VLSI (e.g., to find circuits that formulate a particular topological configuration) [57]
and digital pathology imaging [2] (e.g., to analyze topological images of the brain in order
to check whether cancer is present).

The processing of multiway spatial join is usually significantly more complex
than the processing of simple spatial join because a query can be executed in many
different ways, called execution plans. An execution plan represents both the order in
which datasets are combined and the algorithms that are used to find the final result of a
query. The number of equivalent execution plans for a query is exponential in the number of
datasets [57]. Further, a good execution plan for a query is, in general, orders of magnitude
better than a bad plan, regarding its processing cost. Thus, a great amount of effort has been
dedicated to proposing cost-based optimizers that can select a good execution plan for a
query based on its estimated computational costs [58]. However, those efforts are mainly
dedicated to non-distributed databases or distributed databases for non-spatial data. Spatial

1We use the word “dataset” in this thesis as a synonym for the term “data set”.

20

data imposes particular challenges to join processing and, in general, algorithms designed
for scalar data in relational databases do not apply to spatial data due to the absence of
total ordering in multidimensional data [46].

Another particular challenge of spatial data analysis is the complexity of compu-
tational geometry algorithms – which evaluate the predicates over the spatial data. Even
queries on small datasets have a high processing cost due to the complexity of predicate
algorithms and the different types of spatial objects (e.g., points, lines, polygons). Process-
ing spatial queries in distributed systems by partitioning the datasets using spatial columns
has often been used to reduce the query execution time (or makespan) [46]. However, the
skewed nature of spatial datasets imposes significant challenges to their partitioning using
spatial columns, as skewness may cause unbalanced query execution.

In a distributed system, besides considering the local CPU and I/O costs, the
selection of execution plans must take into account the approach used to perform the data
partitioning and communication between the machines. A proper balance of the query has
to be considered, choosing plans that divide the work evenly among machines, regarding
both the bandwidth limit on the network interface and the load on the CPU. Furthermore,
if we consider a query in a non-isolated scenario – i.e., as a complete solution for data
processing of a distributed spatial database – other important issues arise. For example, the
data must be loaded and partitioned before query execution. However, queries on different
datasets have different data distribution, so, a fixed data distribution cannot be effective
for all queries. The system needs to identify a schedule for query execution which adapts
the data distribution and determines the machine that will process each data partition.
For instance, in an analytics scenario, where a single query runs many times to discover
correlations in the data, a little improvement in query scheduling can significantly reduce
the execution time of long running jobs.

Selecting execution plans and identifying query schedules to efficiently process
multiway spatial join queries in distributed systems are steps towards moving spatial data
analysis to scalable platforms, as has already been done with relational and unstructured
data. However, new methods and algorithms to estimate the cost of an execution plan need
to be specified, taking into consideration the specifics of spatial data and the characteristics
of distributed systems. Processing spatial data analysis in such environments can signifi-
cantly improve the capabilities of spatial data processing, especially in today’s scenario of
cloud computing platforms, taking advantage of scalability, elasticity, and pay-as-you-go
offers.

A large effort in the literature is dedicated to the distributed processing of spatial
join queries (e.g., [14, 20, 46, 70]). However, the focus is on the handling of simple spatial
join. Mamoulis and Papadias [57] studied the processing of multiway spatial join queries.
Their work presents an in-depth study of algorithms to process spatial join, covering

1.1 Thesis Scope 21

techniques to enumerate the set of execution plans, to estimate their cost, and to select
a good plan. However, their work applies only to sequential query processing on non-
distributed systems.

Recently, various frameworks for distributed data processing have emerged, such
as the MapReduce framework [24] and the Spark engine [92]. In these frameworks,
data is split into partitions that are distributed to a number of commodity machines.
The predicate of a query, i.e., an algorithm, processes local data on each machine and
produces partial result sets that are later combined to produce final result. Techniques to
process multiway spatial join in these frameworks were recently proposed (e.g., [3, 27]).
However, these techniques did not consider the selection nor scheduling of execution
plans, a well-established strategy used to process multiway queries in traditional database
systems. In turn, the kind of parallelism implemented by these frameworks, known as
intra-operator level of parallelism [65], is a fundamental design principle responsible for
the high scalability achieved and, generally, is not implemented in traditional distributed
database systems as they focuses mainly in intra-query parallelism [65]. Recently, the lack
of attention to the database theory in the mentioned emerging frameworks was criticised
(e.g., [71, 80]) and some surveys proposed the integration of query optimizers for plan
selection as future work (e.g., [26]).

In this thesis, we investigated how to address the previously mentioned issues by
proposing a cost-based query optimizer for distributed multiway spatial join at the intra-
operator level of parallelism. We studied how to design and implement it by mixing a set
of data and query processing phases, some of them mostly investigated in the parallel and
distributed systems literature, e.g., data partitioning, data distribution, and load-balancing
mechanisms, and others mostly studied in database literature, e.g., query planning that is
comprised of execution plan selection, plan enumeration, and plan costs estimation. In the
next section, we present the scope of this thesis by illustrating this set of phases.

1.1 Thesis Scope
When considering a cost-based query optimizer at the intra-operator level of

parallelism, the efficient processing of multiway spatial join queries in distributed systems
can be addressed by a set of phases as illustrated in Figure 1.1. The cost model is a central
component in this design and supports the cost estimation in all query planning phases.
It is designed for the distributed environment, considering the computational costs of the
algorithms used to process spatial data. The first two phases, data partitioning and data
distribution, split the data into partitions and distribute them into the system, capturing the
metadata required by the cost model. The discontinuity shown in the figure between data
distribution and plan enumeration implies that the first two phases can occur irrespective

1.1 Thesis Scope 22

Data
Partitioning

Data
Distribution

Cost Model

Data partitions Data location

Plan
Enumeration

Datasets Queries

||

Plan
Scheduling

Plan Cost
EstimationPlan SelectionPlan

Execution

Figure 1.1: Distributed query processing phases and their interac-
tion with the cost model. Bold arrows indicate the flow
of the query processing. Dashed arrows indicate input
and dotted arrows the interactions between the phases.
The shaded boxes indicate the scope of this thesis.

of the next ones. After the data is loaded into the system, the submission of queries starts
the next phases (query planning and execution), as described next.

The first phase of query planning is plan enumeration (Figure 1.1), which iden-
tifies the alternative execution plans for query execution. Each alternative plan has an as-
sociated computational cost that needs to be determined by the query scheduling and plan
cost estimation phases. Query scheduling determines where (i.e., in which machine) each
data partition will be processed. Based on the computed schedule, it is possible to deter-
mine the computational costs of a query in the plan cost estimation phase. After computing
the cost of the alternative plans, the plan selection phase selects the best plan to execute
the query in the plan execution phase.

In this thesis, we present models and methods for each of the phases illustrated in
Figure 1.1 except for plan enumeration. The reason for plan enumeration being outside
our scope is that the work of Mamoulis and Papadias [57] presents a comprehensive
algorithm for plan enumeration, which was explicitly designed for spatial data. Although
it was designed for non-distributed query processing, the distributed environment does not
require significant changes. In the next section we detail the primary contributions of this
thesis.

1.2 Primary Contributions 23

1.2 Primary Contributions
The contribution of our work lies in providing a set of comprehensive models and

methods that form a cost-based optimizer for multiway spatial join queries. The optimizer
is able to select a good execution plan for distributed processing, taking into account 𝑖)
the partitioning of data based on spatial attributes of datasets, 𝑖𝑖) the intra-operator level
of parallelism, which enables high scalability, and 𝑖𝑖𝑖) the economy of cluster resources
by appropriately scheduling the query before execution.

The major contributions of this thesis are:

• Identification of the characteristics of spatial datasets and data distribution that are
relevant for the efficient processing of multiway spatial join queries in distributed
systems;

• Definition of a multidimensional histogram data structure to organize these charac-
teristics, observing the data skewness of real spatial datasets; this data structure is
also used as a distributed hash index to access data partitions;

• Introduction of a cost model based on the multidimensional histogram and asso-
ciated costs of the distributed environment, which improves the accuracy of query
cost estimates; although targeting an estimate of the cost of multiway spatial join
queries, the cost model can also be used to estimate the cost of window and simple
spatial join queries;

• Formalization of the distributed multiway spatial join plan scheduling problem as
a multi-objective linear model, considering the minimization of both the makespan
and the communication cost as objectives, and the introduction of three methods
to compute schedules based on this model: a greedy algorithm (GR), and two
algorithms based on combinatorial methods: the well-known Linear Relaxation [85]
(LP) method and the more sophisticated Lagrangian Relaxation [32] (LR) method;
although targeting multiway spatial join query scheduling, these methods can be
applied to other distributed systems as well, which require both data partitions
alignment and assignment of jobs to machines;

• Investigation and introduction of methods to control the resource consumption of
query schedules regarding the trade-off between a well-balanced query execution
that minimizes the query execution time, and a somewhat unbalanced execution that
minimizes the incurred communication cost due to the movement of data partitions;
and

• Introduction of a method to select good execution plans to process multiway spatial
join queries in distributed systems.

1.3 Thesis Outline 24

1.3 Thesis Outline
The remainder of this thesis is organized as follows.
Chapter 2 provides background concepts about spatial data and spatial query

processing, focusing on spatial join and multiway spatial join queries. We present an
overview of the steps involved in the planning of multiway spatial join queries and
highlight the additional challenges that a distributed environment imposes on them.

Chapter 3 proposes and evaluates a model to estimate the cost of distributed
multiway spatial join queries. We show how to build intermediate histograms using the
predicted intermediate results and how to use them to calculate the cost of a multiway
spatial join. Furthermore, we present a set of new statistical formulae that provide more
accurate estimation of join selectivity, i.e., the size of intermediate join results, for real
spatial datasets, involving complex lines and polygons. This chapter includes and revises
material from previously published work [21, 22].

In Chapter 4, we consider the scheduling of query plans, i.e., the problem of
assigning jobs, which are defined by pairs of data partitions from two datasets and aligned
by a spatial predicate, to a set of machines in a distributed system.We propose and evaluate
a multi-objective linear integer model for this problem and propose methods to compute
approximate solutions for it.

In Chapter 5, we study and propose a method to adapt the scheduling behavior
concerning the use of computing resources. We show that attempting to minimize both
CPU and network consumption when executing distributed queries creates conflicting
objectives, in the sense that to achieve a better balance in the query execution (and
consequently a reduced makespan) an extra cost is incurred to transfer partitions to
machines that are underloaded. The method is based on Parametric Analysis (PA), which
is a type of post-optimality analysis of integer linear programs [36].

Chapter 6 introduces some methods for the final query optimizer proposed in this
thesis and presents a query execution engine that can execute multiway spatial join queries
following the schedules provided by the optimizer. This chapter revises material from [22].

Chapter 7 presents a literature survey on the processing of multiway spatial join
queries and compares the reported solutions with the corresponding ones proposed in this
thesis.

Finally, we present our conclusions in Chapter 8, reflecting on our contributions,
the limitations of our approach, and opportunities for future work.

There are also two appendices: Appendix A, with the complete experiment
results and parameters used in the evaluation of the schedule methods in Chapter 4
and Appendix B, which describes a complete example of the application of the method
proposed in Chapter 5.

CHAPTER 2
Multiway Spatial Join Processing

In this chapter, we provide background concepts about spatial data and spatial
queries processing, focusing on spatial join and multiway spatial join queries. We present
an overview of the steps involved in the planning of multiway spatial join queries and
highlight the additional challenges that a distributed environment imposes on them.

We first explain the nature of spatial data (Section 2.1) and then present the main
types of spatial queries (Section 2.2). Section 2.3 covers the simple spatial join query, one
of the most-used spatial queries, and an algorithm used to process it in distributed systems,
known as Clone Join.

Section 2.4 presents the definition of multiway spatial join queries, which is the
focus of this thesis. We review the steps involved in planning and executing general dis-
tributed multiway queries: plan enumeration (Section 2.4.1), plan cost estimation (Sec-
tion 2.4.2), plan scheduling (Section 2.4.3), plan selection (Section 2.4.4), and plan ex-
ecution (Section 2.4.5). In each of these sections, we discuss the challenges imposed by
spatial data and by the distributed environment.

2.1 Spatial Data
Spatial data is data about positions, attributes, and relations of entities in

space [59]. It is a specialized data type, handled with particular techniques by spatial
databases [74]. The term is often used as a synonym for geographical data or geospatial
data, which refers to data about objects on the surface or near-surface of the Earth [77].

In this thesis, we use the term spatial data, instead of geospatial data, to make
explicit that all methods proposed here can be applied irrespective to the spatial reference.
For instance, the spatial reference can be another planet surface, the cosmos, the place
of electronic components on a circuit board, or data about the human body captured by
medical images. In each of these spatial references, a particular projection is used to flatten
the data onto a planar representation. This projection is called a spatial reference system.

A spatial object is a representation of an entity that is present in space [74],
composed of alphanumeric attributes that describe the entity itself, and by a spatial

2.1 Spatial Data 26

component that describes the geometry (location and shape) and sometimes the topology
(spatial relationships, such as overlapping, adjacency).

A layer or dataset is a set of spatial objects that are of the same type, i.e., have the
same structure [74]. For example, a river dataset composed of a set of spatial objects that
represent water courses in a particular region. A spatial object represents each river and
has a set of descriptive alphanumeric attributes such as name, length, and topographical
classification, and a spatial attribute that embodies its geometric aspects.

A spatial data model is used to represent the spatial attribute of a spatial object.
A spatial data model is a set of rules to describe and represent aspects of real spatial
entities [12]. There are two major spatial data models: the raster data model and the vector
data model. Both models have advantages and disadvantages. Which one to use depends
upon the purpose of the application.

The raster data model divides the space into cells arranged in rows and columns
of equal size. These cells annotate spatial properties or attributes, similar to what a digital
image does with visual information [54].

The vector data model uses a set of points in a coordinate system as vertices of
a spatial entity contour. It provides a high precision representation of spatial objects and
has inherent topology, two characteristics that simplify spatial analysis [12].

The vector data model has three fundamental data types:

1. point, a zero-dimensional object with a single coordinate pair, used to represent the
location of something in space;

2. line, a one-dimensional object with a set of interconnected points, used to represent
roads, rivers, boundaries, and so forth; and

3. polygon, a two-dimensional object with one or more lines arranged in a closed loop,
with the first point being equal to the last one. Polygons are used to represent objects
with areas, such as city contours, and lakes [12]. When considering volume or time,
a third and fourth dimension can be introduced in this model [74].

The task of storing and querying a set of spatial datasets is performed by spe-
cialized Database Management Systems (DBMS) [65]. A Spatial Database Management
System (SDBMS) provides comprehensive technology to represent spatial objects, access
methods for fast retrieval, query languages, and algorithms from related disciplines such as
computational geometry [74]. Due to the high volume and the complexity of spatial data,
a Distributed Database Management Systems (DDBMS) [65] specialized with spatial data
capabilities should be used to perform spatial queries fastly.

Spatial data and SDBMS is a broad field of study. In this thesis, we are partic-
ularly interested in spatial data represented in the vector data model, and we focus on
distributed processing of multiway spatial join queries. The following sections describe
spatial analysis and spatial queries, and introduce the spatial join query.

2.2 Spatial Analysis 27

2.2 Spatial Analysis
Spatial Analysis is themanipulation of spatial data for the purpose of adding value

to it, supporting decisions, or even revealing information that is not immediately apparent.
In other words, spatial analysis is the process of transforming raw spatial data into useful
spatial information [54].

Spatial Queries are the fundamental operations employed in spatial analysis.
They enable an in-depth study of topological and geometric attributes of spatial objects
from a single or multiple datasets [12].

Three important types of spatial queries are:

1. Window query, a geometric selection applied to a single dataset. The result of
this query is a set of objects that overlap with a given region or window, usually
rectangular;

2. Spatial Join, an overlay operation, applied to two datasets. In this query, a spatial ob-
ject from one dataset is joined with an object of the other dataset if their geometries
satisfy a spatial predicate, such as intersection or coverage; and

3. Multiway Spatial Join, a spatial join that involves an arbitrary number of datasets,
each pair of datasets having a particular spatial predicate.

As they are of fundamental importance in this thesis, spatial join and multiway
spatial join queries are discussed in more detail in the following sections.

2.3 Spatial Join
A spatial join operation consists of a combination of objects from two spatial

datasets in pairs that satisfy some spatial predicate, 𝜃, such as intersection or coverage.
The result of a spatial join of datasets 𝐴 and 𝐵, denoted as 𝐴 ⋈ 𝐵, consists of all pairs of
objects {𝑎, 𝑏}, 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵, which fulfill 𝑎 𝜃 𝑏 [10].

Consider two spatial datasets with a spatial attribute representing city limits
and rivers of a country. A spatial join can identify all combinations of rivers and cities
that intersect with each other, applying an algorithm for predicate-checking to verify
intersection between each pair of spatial attributes (e.g., comparing the set of points and
line segments that define each river and city object).

A spatial join is processed in two distinct steps: (𝑖) filtering step and (𝑖𝑖) refine-
ment step [46]. In the filtering step, candidate pairs are identified using simplified poly-
gons, such as the minimum bounding rectangle (MBR), an approximation of the original
polygon formed by a bounding rectangle with extreme corners defined by the minimum
and maximum coordinates in each dimension of the original object. Due to the use of

2.3 Spatial Join 28

simplified polygons, these candidate pairs can be false hits. The refinement step applies a
geometry algorithm to the filtered pairs to check the predicate 𝜃 over the real objects, in
order to identify the correct results of the operation.

Performing spatial joins using indexes like R-Trees or another recursive index
can reduce the join execution time [9]. For datasets with specific characteristics, like
low cardinality or high selectivity, however, some hash-based algorithms can perform
better [53]. The next section discusses the issues involved in the distributed processing
of spatial joins.

2.3.1 Distributed Processing of Spatial Join
As the availability of large spatial datasets has recently increased, many algo-

rithms to process spatial join queries in parallel or distributed computational environments
have been proposed. Most of these algorithms use a data partitioning (declustering) strat-
egy to split dataset objects into groups, called data partitions or cells. Prior to or during
the join execution, a routine assigns a set of partitions to a particular server or processor
that will perform the query on the set. There are two principal categories of methods for
spatial data partitioning:

1. Disjoint space partitioning – uses a grid of disjoint cells to divide the space extent
of the dataset. Each cell of the grid groups the spatial objects according to their
intersection with the cells. This partitioning replicates objects that intersect at more
than one cell; and

2. Non-disjoint space partitioning – partitions can overlap each other to accommodate
the extent of the objects that intersect them and does not require object replication.
An example of this type of partitioning is the set of MBRs on a given level of an
R-Tree index.

The type of partitioning guides the development of a spatial join algorithm. For
non-disjoint space partitioning, some associated distributed algorithms are: Replicated
Semi-packed Parallel R-Tree (RSPR) [61],Distributed Synchronous Traversal (DST) [18],
and Proximity Area Spatial Join (PASJ) [20]. All of them use distributed R-Tree indices
to process the spatial join. For disjoint space partitioning, some associated algorithms
are: Clone Join (CJ) [70], Shadow Join (SJ) [70], and Non-blocking Parallel Spatial Join
(NPSJ) [62].

As shown by Patel and DeWitt [70], the non-disjoint division of the space of an
R-Tree causes significant communication overhead during join filtering and refinement.
For this reason, in this thesis, we consider only algorithms designed for disjoint space
partitioning.

2.3 Spatial Join 29

CJ is the simplest algorithm that uses disjoint space partitioning. It uses a fixed
grid to partition datasets and replicate spatial objects that intersect more than one grid cell.
The difference between CJ and SJ is that the latter uses a more sophisticated technique
to reduce object replication. The NPSJ algorithm also uses a fixed grid and replicates
objects as does CJ. However, it is a non-blocking algorithm that produces results early in
the execution. Another difference between NPSJ and the others is that it creates local R-
Trees on each data partition and identifies the results using an R-Tree Join (RJ) [9], while
CJ and SJ use Partition-based Spatial-Merge Join (PBSM) [69].

Another issue in distributed spatial join processing is the distribution of the data
partitions. The simplest and most-used distribution method is round-robin. It distributes
the partitions evenly between the servers, promoting load balance in the cluster. Other
methods that favor the co-location of spatial data have also been proposed, such as the
Proximity Area method [20] for non-disjoint partitioning, which distributes the partitions
based on their location, favoring reduction of network bandwidth usage during spatial join
execution.

As the co-location of spatial extent is not considered in a round-robin data
distribution, often data partitions from two distinct datasets with overlapping geographic
region will be assigned to distinct servers in the cluster. The join algorithm thus needs
to replicate the overlapping partitions on a particular server in order to execute the join.
Although the round-robin distribution can be thought as the worst distribution to use,
there seems to be a trade-off between data assignment and load balancing that favors a
round-robin distribution on faster local networks. As discussed by de Oliveira et al. [20],
distributing the partitions based on their location will reduce network bandwidth usage at
the expense of compromising the load balance of spatial join execution.

Following the results reported in [70], in this thesis we use a disjoint space
partitioning. Each grid cell was used to group and assign the spatial objects to form data
partitions. For join execution, we used the CJ algorithm with the duplication avoidance
technique, based on the Reference Point Method. The CJ algorithm is simpler than NPSJ
and duplication avoidance also transforms it into a non-blocking algorithm. The next
section covers the CJ algorithm and the Reference Point Method in more detail.

2.3.2 Clone Join
Clone Join (CJ) [70] is a distributed spatial join algorithm for joining two non-

indexed datasets. The data partitioning used by the algorithm is a grid of disjoint cells, each
cell representing a small part of the spatial extent. The algorithm assigns spatial objects
to each cell based on the intersection between their MBRs and the cell boundaries, and
replicates objects that intersect more than one cell. A set of cells and the corresponding

2.3 Spatial Join 30

spatial objects produce a data partition that is assigned to one server using a round-robin
distribution or a similar hash function applied to the cell number. In each server, the
join operation is performed in parallel, using a local Partition-based Spatial-Merge Join
(PBSM) [69], which is a spatial join algorithm for shared-memory parallel systems.

Figure 2.1 illustrates a data partition for an example dataset. The spatial objects
(gray rectangles in the figure) are positioned on a grid of sixteen cells. The cells are
distributed among four servers indicated by the number on each cell. Objects that intersect
more than one cell are cloned for each of them.

Patel and DeWitt [70] assume that both datasets are partitioned and distributed
using the same grid, at the beginning of the join execution. Although this is an interesting
scenario for query cost estimation, due to the absence of partial cell overlapping, this
assumption is not valid for a database system. In a database, we do not knowwhich datasets
will be joined until a query is submitted to the system. Thus, when loading the data into
the system, we can not choose what grid to use for which dataset based on future joins.
Furthermore, it seems that for a more precise query costs estimation, each dataset requires
a particular partitioning scheme based on its geographic extent and spatial objects sizes.
We will investigate this issue in Chapter 3.

A more realistic scenario would be to previously load the datasets in the database
and assign a customized grid to each one, considering its spatial extent and the distribution
and size of its spatial objects. During query evaluation, the pairs of cells from each dataset
are identified using the system catalog (metadata) and the join algorithm copies and
assigns the necessary partitions to the servers to perform the join.

Due to object replication, an additional step is required to eliminate duplicate
results generated at the refinement step. The algorithm reports a result more than once
whenever two spatial objects that intersect each other are present in two or more cells
that were previously assigned to different servers. Each server will individually report the

0 1 2 3

3 0 1 2

2 3 0 1

1 2 3 0

Figure 2.1: Illustration of the Clone Join Partitioning Method.
Adapted from [70].

2.3 Spatial Join 31

intersection between the objects. Patel and DeWitt [70] utilized a distinct operator at the
end of the algorithm to eliminate duplicate results. However, this is a costly operator in
distributed systems due to its network-bound behavior. Objects with large spatial extents
(such as lines and polygons) increase the number of replicated objects. Consequently,
the consumption of resources (notably, bandwidth and execution time) increases and
partitioning needs to be defined according to object replication.

2.3.3 Reference Point Method
Dittrich and Seeger [25] proposed a solution for the result duplication problem

called the Reference Point Method (RPM). The method consists of identifying the possible
cells that will report duplicate results and allowing only one of them to do so.

Figure 2.2 shows an illustration of the method. There are four partitions:
𝑃0, … , 𝑃3, and two spatial objects, 𝑟 and 𝑠. The two objects are from distinct datasets
𝑅 and 𝑆. The four partitions have all objects replicated in them, due to their spatial extent.
If each partition ends up assigned to a different server in the cluster, each server will re-
port the pair (𝑟, 𝑠) as a join result. The reference point in the figure, 𝑟𝑝, can be obtained by
the equation 𝑟𝑝 = (𝑚𝑎𝑥(𝑟.𝑥𝑙, 𝑠.𝑥𝑙), 𝑚𝑖𝑛(𝑟.𝑦ℎ, 𝑠.𝑦ℎ)), where 𝑥𝑙 is the leftmost 𝑥 coordinate
and 𝑦ℎ is the highest 𝑦 coordinate [25]. Although not mentioned by Dittrich and Seeger
[25], the case for which 𝑟𝑝 falls exactly at the intersection of the four regions, or indeed,
in any of the segments that divide any two regions, can be handled by considering these
coordinates to pertain to the rightmost bottom partition. Thus, as the reference point can
overlap only one partition, this fact is used to specify which server will report the result.

Patel and DeWitt [69] proposed the RPM originally for the PBSM algorithm, a
parallel spatial join algorithm for shared memory parallel systems. Naughton and Ellmann
[62] later adapted it to the NPSJ algorithm, a spatial join algorithm for distributed systems.
Similarly, we can apply the reference point method as a verification subroutine in the
filtering step of CJ.

𝑃0 𝑃1

𝑃2𝑃3

𝑟

𝑠

Reference Point (𝑟𝑝)

Figure 2.2: Illustration of the Reference Point Method with two
rectangular objects, 𝑟 and 𝑠.

2.4 Multiway Spatial Join 32

2.4 Multiway Spatial Join
Multiway spatial join is a spatial join query with an arbitrary number 𝑛 of input

datasets, 𝑛 > 2 [68]. An example of multiway spatial join query is: “Find all animal species
living in preservation areas that were damaged by fire at a riverside.” Four spatial datasets:
animals, preservation areas, fire propagation and rivers need to be combined to compute
the query results.

Amultiway spatial join can be represented as a graph 𝐺 = (𝑉 , 𝐸) with node set 𝑉
and edge set 𝐸, where each node represents a distinct dataset, and the edges represent the
join predicates [57, 68]. Figure 2.3 illustrates three examples of query graphs. Each sub-
figure represents a different type of query, classified according to the characteristics of the
graph. Figure 2.3a shows a tree or chain query, a common type of query on relational spatial
data processing that has all datasets combined in pairs, without repetition. Figure 2.3b
shows a cycle query, in which there is a cycle in the graph. Finally, Figure 2.3c shows a
case where all datasets need to be verified against each other to check the predicate.

Each query in Figure 2.3 can be divided into steps and processed in different
orders. Mamoulis and Papadias [57] investigated the number of ways a query can be
processed for serial processing (non-parallel, non-distributed), and showed that it is a
function of the query type, the number of input datasets, and the number of different join
algorithms that can be used at each step. For example, there are almost 100 combinations
for five input datasets with a clique query graph, considering three join algorithms [57].
Each of these combinations is a different execution plan for a query.

Figure 2.4 illustrates some alternative plans to process a chain query graph (2.4a).
In Figure 2.4b, the datasets are pairwise joined in a first step, producing two intermediate
results, which are joined by the second step. In Figure 2.4c three datasets are joined in a
single step and the second step joins the generated intermediate result with the animals
dataset. In Figure 2.4d , the first step joins fire and riversides, and the subsequent steps
join intermediate results with the other two datasets, one at a time.

animals

areas riversides

fire

(a) Tree or Chain

animals

areas riversides

fire

(b) Cycle

animals

areas riversides

fire

(c) Clique
Figure 2.3: Multiway spatial join query types: a) fires that intersect

riversides, but not animals nor areas, b) fires that in-
tersect preservation areas and animals, and c) all items
that intersect with each other.

2.4 Multiway Spatial Join 33

animals

areas riversides

fire

(a) Query Graph

⋈

⋈

animals areas

⋈

fire riversides

(b) Bushy plan 1

⋈

⋈
animals

areas
riversides

fire

(c) Bushy plan 2

⋈

⋈
animals⋈

areas

fire riversides

(d) Left-deep plan

Figure 2.4: Alternate execution plans to process a multiway spatial
join query.

All the execution plans for a given query preserve the same query semantics but
may take different amounts of time to produce the final result. A query optimizer, or plan
selection algorithm, uses as input the graph that represents a query and, after enumerating
the possible plans, selects one of them to perform the query. The optimizer considers some
aspects of the datasets and the associated costs of the algorithms to select an execution
plan that determines: 𝑖) how the datasets will be combined, 𝑖𝑖) the processing order of the
datasets, and 𝑖𝑖𝑖) which algorithms to use in each step.

Despite the name, a query optimizer does not search for the optimal plan to
perform a query, since the optimal execution plan is difficult to find with a large number
of datasets [44]. In general, the optimizer uses heuristic algorithms to choose a plan that
has a reasonable execution time.

A query optimizer can be of two types: a rule-based optimizer (RBO) and a
cost-based optimizer (CBO). The rule-based optimizer uses fixed rules to select a good
execution plan [33]. Rule-based optimizers are simpler to construct and have the advantage
of quickly selecting an execution plan, but are less flexible concerning the addition of new
join algorithms and have limited sensibility to dataset properties not considered in their
design.

In contrast, a cost-based optimizer estimates a cost for each plan based on dataset
properties, as well as the I/O and CPU costs of the join algorithms. This type of optimizer
is more adaptive to dataset properties, and a join algorithm can be easily integrated as long
as it provides a cost estimation function. However, the optimizer needs to estimate the cost
of many plans. It also needs to collect metadata from the dataset, a priori. For instance, the
optimizer proposed by Fornari et al. [34] and Mamoulis and Papadias [57] are examples
of this type of optimizer.

2.4.1 Plan Enumeration
In multiway spatial join queries, the space of possible plans to select from is

nonlinear with respect to the number of datasets. Mamoulis and Papadias [57] studied
the number of possible plans considering three different algorithms to process spatial join
queries in a non-distributed system. The recurrence in (2-1) gives the number of plans,

2.4 Multiway Spatial Join 34

𝑃 (𝑛), for a chain query with 𝑛 datasets [57]. In asymptotic terms, 𝑃 (𝑛) = 𝛺(2𝑛). Cycle and
clique queries have evenmore execution plans. As a result, if a query involves a sufficiently
large number of datasets, a query optimizer can take more time planning – by having to
enumerate all possible plans to estimate their costs – than the execution engine will take
by executing the query. For instance, a chain query with ten datasets results in 8, 944 plans
to evaluate, according to the equation.

𝑃 (2) = 1

𝑃 (𝑛) = 1 + 2𝑃 (𝑛 − 1) + ∑
2≤𝑘<𝑛−1

𝑃 (𝑘)𝑃 (𝑛 − 𝑘) (2-1)

To quickly identify good execution plans while searching only a small fraction of
the search space, Mamoulis and Papadias [57] proposed a heuristic that randomly trans-
forms a seed plan using a set of pre-defined rules, such as associativity, commutativity,
and others specific to spatial data predicates. This transformation was applied as a subrou-
tine within iterative improvement and simulated annealing methods and was able to find
plans only slightly more expensive than an optimal execution plan found by an exhaustive
method. The proposed algorithm is a good strategy for queries with a large number of
datasets and can be integrated into a cost-based optimizer for multiway spatial joins.

The enumeration of plans is a required component of a cost-based query opti-
mizer, whose input is the query to be processed, and the output is a set of candidate
plans. This process has been extensively studied in the context of relational databases [45].
Mamoulis and Papadias [57] discussed how to adapt it for multiway spatial join queries.

The investigation of a plan enumeration algorithm is outside the scope of this
thesis because the distributed environment does not impose significant modifications on
it. Indeed, the evaluation of our proposed methods benefits from using an exhaustive
algorithm, to compare the costs and the selection of a good plan over the entire set of plans.
For practical applications, where the exhaustive search is prohibitively expensive, the
non-distributed approach proposed by Mamoulis and Papadias [57] can be used without
modification.

2.4.2 Estimating the Cost of Execution Plans
Despite the complexity of estimating the cost of execution plans for spatial data,

some authors have proposed expressions that predict the cost of spatial join queries, such
as [34, 75, 79], as well as methods to combine them to predict the cost of multiway spatial
join queries [56]. Such a set of equations andmethods is called a cost model in the database
literature.

2.4 Multiway Spatial Join 35

Those equations predict the cost of an execution plan by calculating the I/O
and CPU costs of the join algorithm, assuming that spatial objects fill the spatial extent
uniformly. The same authors later studied the difficulty of using them on real datasets [57],
and conclude that, when used on real spatial datasets, the equations can induce bad
execution plans, especially in the presence of dataset skewness.

Mamoulis and Papadias [56] studied the applicability of the equations in small
regions of the dataset. They propose the use of a uniform histogram that divides the spatial
extent of the dataset in a map with fixed-size cells, each of them mapping the density of
small regions, as illustrated in Figure 2.5b. In Figure 2.5b, a grid of 225 cells (15 × 15)
divides the spatial dataset of fire warnings for the Brazilian cerrado biome (Figure 2.5a).

The main advantages of uniform histograms are 𝑖) simplified construction, 𝑖𝑖)
time efficiency to estimate queries, and 𝑖𝑖𝑖) incremental maintenance for non-static
datasets [16]. Furthermore, grid histograms provide a natural way of partitioning spatial
data, a required step in distributed systems processing. A deficiency of uniform histograms
is the large estimation error for skewed data. Although increasing the number of cells re-
duces the error, it also increases the amount of memory needed to store the histogram
structure [16]. There are other types of histograms for spatial data, such as [1, 73, 75],
that can be used to improve the estimation of skewed datasets. However, estimating query
costs with those histograms is more complex, and their recursive nature creates significant
drawbacks for incremental maintenance and data partitioning.

A major challenge when building multidimensional histograms for spatial data
is how to account for spatial objects in the histogram cells. We refer to this process as
hashing. Mamoulis and Papadias [56] defined the cardinality value of each cell based on
the number of spatial objects that have the center of their minimum bounding rectangle
(MBR) within the cell limits. Although this method is accurate for point data, other types
of spatial objects, such as lines and polygons, have a spatial extent that brings additional

(a) (b)
Figure 2.5: Fire warnings dataset for the Brazilian cerrado biome,

splitted by a histogram grid (a) and the 15 × 15 his-
togram cells distinguished by the density of objects (b).

2.4 Multiway Spatial Join 36

challenges to histogram building. A single line or polygon object can overlapmore than one
histogram cell, and the use of the MBR center accounts the object to only one histogram
cell, leading to errors when estimating the query costs.

The definition of the number of cells, or grid resolution, is another issue in grid
histograms. In general, a higher number of cells (or buckets, for non-grid histograms) can
provide additional precision in cost estimation. However, Mamoulis and Papadias [57]
identified that increasing the number of cells, besides reducing the cell size, introduces
boundary errors due to the increase in the number of objects that intersect more than one
cell. How to define the grid resolution, based on dataset metadata is still an open question
for spatial data. Furthermore, in distributed systems, when we use the standard approach
of transforming each cell in a data partition, a small number of partitions can interfere with
the load balance. A higher number of data partitions can be used as a strategy to reduce
the size of data partitions and the effect of data skewness in the load balance. Moreover, a
small number of data partitions can decrease the degree of parallelism of query execution,
affecting system scalability.

To further improve the precision in cost estimation with grid histograms,
Mamoulis and Papadias [56] proposed the use of the average length of objects as an addi-
tional metadata in each histogram cell. This metadata is defined for each dimension based
on the average of the lengths of the MBR of all spatial objects hashed in a given his-
togram cell. For objects that overlap more than one histogram cell, only the area inside the
cell boundaries is considered. The restated equations (2-2), originally presented in [82],
and (2-3), originally presented in [83] (both improved in [56]), show how to use the aver-
age length to determine the output cardinality of windows (𝑂�̄�) and join queries (𝑂𝑗) as
explained in the following. We use these equations in the development of the cost model
in this thesis.

Given a cell 𝑎 from histogram 𝐻𝐴, the output cardinality 𝑂�̄� of a window query
�̄� can be estimated by (2-2), where ̄̄𝑎 is the cardinality of 𝑎, 𝑑 is the number of data
dimensions, 𝑙𝑎𝑘 represents the average length of the set of objects in 𝑎 in dimension 𝑘, 𝑙�̄�𝑘
is the length of �̄� in dimension 𝑘, and 𝑙𝑢𝑘 is the length of 𝑎 in dimension 𝑘, 𝑙𝑢𝑘 ≠ 0. The
rationale behind this equation is that the probability of intersection between a random
MBR of an object from 𝑎 with the query �̄� at some dimension 𝑘 equals the sum of
projections 𝑙𝑎𝑘 and 𝑙�̄�𝑘 on that dimension normalized to the workspace (𝑙𝑢𝑘). The product
in the equation is due to the intersection predicate itself, i.e., all dimensions must intersect
simultaneously.

𝑂�̄�(𝑎, �̄�) = ̄̄𝑎 ⋅
𝑑

∏
𝑘=1

𝑚𝑖𝑛 (1, 𝑙𝑎𝑘 + 𝑙�̄�𝑘
𝑙𝑢𝑘) (2-2)

2.4 Multiway Spatial Join 37

For spatial joins, given a pair of overlapping cells {𝑎, 𝑏}, from histograms 𝐻𝐴
and 𝐻𝐵, generated from datasets 𝐴 and 𝐵, the output cardinality of the spatial join 𝑂𝑗 for
the cell pair can be estimated by (2-3), where 𝑖 is the intersection of the MBRs of 𝑎 and 𝑏,
𝑙𝑖𝑘 is the length of 𝑖 in dimension 𝑘, 𝑙𝑖𝑘 ≠ 0, and the other terms are defined according to
the previous equation (2-2). This is an extension of (2-2), where the cardinality of the two
datasets are limited by their common area (𝑖) and the expected number of intersections is
reduced by applying window queries of size 𝑙𝑏𝑘 on 𝑎. The workspace, used to normalize
the lengths, is also limited by the common area, i.e., determined by the length of 𝑖 (𝑙𝑖𝑘).

𝑂𝑗(𝑎, 𝑏) = 𝑂�̄�(𝑎, 𝑖) ⋅ 𝑂�̄�(𝑏, 𝑖) ⋅
𝑑

∏
𝑘=1

𝑚𝑖𝑛 (1, 𝑙𝑎𝑘 + 𝑙𝑏𝑘
𝑙𝑖𝑘) (2-3)

Mamoulis and Papadias [57] showed that by applying (2-3) to each pair of cells
that obeys the join predicate in a plan step leads to more precise estimates of the output
cardinality for join queries. Furthermore, by looping through all pairs of intersecting cells
from 𝐻𝐴 and 𝐻𝐵 and applying (2-3), we can build an intermediate histogram 𝐻𝑅 with
the resulting 𝐽𝑐 for each pair. Therefore, the estimation (to be used later in the plan) can
use this intermediate histogram as input.

The plan format has an impact on the precision of the estimated cost of a query due
to error propagation across the plan steps. Left-deep plans have a histogram created from
a dataset at each step that contributes positively to error reduction. On the contrary, bushy
plans have steps composed of two intermediate results, both being estimated histograms,
which may contribute to error propagation.

Although left-deep plans do not exhibit a high level of parallelism [65], due to the
dependency between two plan steps in sequence, a more aggressive data partitioning helps
to solve this problem, while also increasing histogram precision. For instance, by creating
a data partition for each histogram cell, one can take each data partition as a query fragment
that can be performed in parallel.

In distributed systems, other parameters are also relevant to compute the cost of
a plan, such as the size of objects (given by the number of points of spatial objects), the
overhead of messages, and the location (server or processor) of data partitions. Although
these new parameters bring additional challenges to histogram building, including how
to compute these values from datasets and how to estimate their values in intermediate
histograms, they are useful when estimating the query communication cost.

These open issues mean that to efficiently estimate the total cost of a multiway
spatial join query in a distributed system, new algorithms and formulae need to be
proposed. We address these issues in Chapter 3.

2.4 Multiway Spatial Join 38

2.4.3 Plan Scheduling
In a distributed system, the optimizer must also specify on which server each

query fragment will be executed [48]. Consequently, this decision also specifies where
each data partition should be copied from, observing that data partitions are distributed a
priori.

Different strategies exist to specify the server where to execute a query fragment.
Some of them are: 𝑖) place smaller query fragments on the servers that handle the largest
partitions, to reduce data communication, 𝑖𝑖) place query fragments in such a way that
network contention does not cause processors sleep, and 𝑖𝑖𝑖) place query fragments in a
way that maintains cluster balance. We refer to this decision process as plan scheduling.
It is also referred to as copy selection and sub-query allocation in the literature for multi-
database systems [65].

The query optimizer can generate the schedule for a plan at different stages in
the optimization process. An initial proposal is to view each possible schedule for a plan
as a distinct sub-plan, further increasing the search space in plan enumeration and plan
selection. According to Özsu and Valduriez [65], this may result in higher query startup
times. A better approach is to use hybrid optimization techniques [13, 31]. They split the
execution plan into two parts: 𝑖) a static plan, built at compile time, to determine the access
methods to use and the order of dataset processing, and 𝑖𝑖) an execution plan, generated at
runtime, to determine the copy and site selection.

The existing methods proposed for plan scheduling employ heuristics that use as
input the network topology, the size and location of data partitions, and a general objective
– such as minimizing the response time (increasing the degree of parallelism) or reducing
the consumption of resources. In addition, they are designed considering a modest number
of data fragments and sites, and only search for locally optimal strategies, rather than global
ones [65].

Nowadays, the availability of cloud environments with a large number of ma-
chines and the large size of spatial datasets creates a demand for specific algorithms, spe-
cially designed for the combinatorial nature of the problem. In this thesis, we address the
shortcomings of existing plan scheduling approaches by proposing new algorithms based
on the theory of combinatorial optimization. We dedicate Chapter 4 to deal with plan
scheduling, from the perspective of single and multiway spatial join queries.

2.4.4 Plan Selection
The primary purpose of a query optimizer is the selection of the plan that will be

used to execute the query, considering the set of possible plans and the estimated cost for
each one.

2.4 Multiway Spatial Join 39

In distributed systems, at least two main strategies of selection exist:

1. select the plan that minimizes the total query time, i.e., the sum of the times the
query takes in each server; reducing the total query time results in an improvement
of resource utilization, increasing system throughput, and

2. select the plan that minimizes the query response time, considering only the time of
the server that stays for longer executing the query, also referred to as the makespan
of the query.

Reducing response time sometimes can increase resource consumption. For ex-
ample, raising the degree of parallelism increases the use of network bandwidth, but di-
vides the load on the servers [65]. In practice, the optimizer establishes a compromise
between these two strategies.

The query optimizer searches through the space of equivalent plans enumerated
by the plan enumeration method. For queries involving a small number of datasets,
this space is commonly searched using a dynamic programming algorithm. For larger
queries, however, randomized algorithms are employed. Furthermore, the optimizer needs
to estimate the cost of each enumerated plan, using a cost model that predicts the use of
computational resources [65].

The plan selection can be thought as a final objective, after considering the
computational resources consumption in each step of the query optimization. Thus, the
optimization can be resumed as the following procedure: (1) while enumerating the plans
for a query, (2) the cost model estimations is used to (3) define a schedule of the execution
and compute the final costs incurred, and finally, by comparing the costs for enumerated
plans, we (4) select a good plan to execute the query. As wementioned, (1) is a well-studied
problem and in this thesis we focus on (2), (3), and (4) in later chapters.

2.4.5 Query Execution
In this step the query is finally executed, according to the computed execution

plan. The query execution engine dispatches query fragments according to a pre-computed
schedule, and reports the query results. Moreover, the execution engine also performs the
copy of partitions, according to the pre-defined data distribution.

The execution of multiway spatial queries can be implemented using algorithms
for distributed spatial join, i.e., it does not require specific multiway algorithms, as the
steps can be combined in a pairwise fashion. Furthermore, it can greatly benefit from non-
blocking algorithms, due to the fact that plan steps are executed in a pipeline, reducing
query execution time and the need for storing intermediate results.

Query execution is a relevant problem to be considered in a distributed system.
Recent research has reported relevant engines for distributed query execution, such as

2.5 Final Considerations 40

the MapReduce framework [24], not specifically targeted for spatial query execution but
with relevant results reported (e.g., [39]), and its in-memory counterpart and more query
focused, Spark engine [92], also with relevant results reported (e.g., [27]).

In this thesis, we made an effort to specify the minimal set of operations that
an execution engine must implement to perform a selected plan following its respective
schedule. We also implemented this specification to compute the result set for a multiway
spatial join query and to report relevant measurements in our experiments. However, as
we focused on planning the query execution, i.e., selecting good execution plans with
respect to computational resource consumption, a complete execution engine is outside
the scope of this thesis. Despite this decision, we show that our results are applicable to
the previously-mentioned execution engines as well, when the computational cost can be
estimated a priori.

2.5 Final Considerations
In this chapter, we presented the relevant concepts and structures proposed for

non-distributed processing of multiway spatial join queries and discussed some open
issues related to the distributed processing of this type of spatial query. We also presented
concepts of distributed query planning, such as the components of a distributed query
optimizer. A summary of the open issues addressed in this thesis is given in the following.

First, in Chapter 3, we propose a cost model to estimate the resource consumption
of simple andmultiway spatial join queries. To improve the accuracy of estimates, we study
the hashing of complex spatial objects, i.e., objects with spatial extent (lines, polygons),
and introduce a method to perform the histogram construction. Also, we propose new
algorithms to compute intermediate histograms, taking into account the inherent properties
of the distributed environment. An example is the communication cost, which is mainly
determined by the data distribution, rather than by the properties of the spatial dataset
itself.

In Chapter 4, we study how to define a schedule for the execution of a query plan
in a distributed system.We propose and evaluate a multi-objective linear integer model for
this problem and apply combinatorial methods to solve it. To the best of our knowledge,
the formal definition of models and the application of combinatorial techniques were little
explored in distributed database literature.

Next, in Chapter 5, we study how to control the usage of computational resources,
i.e., processing power and network capacity. In general, to achieve a better balance in
the query execution (and consequently a reduced makespan), an extra cost is incurred
to transfer partitions to machines that are underloaded. We study how to control the
scheduling behavior in this respect.

2.5 Final Considerations 41

Finally, in Chapter 6, we show how to integrate all the proposed pieces in the
method for plan selection, defining the complete query optimizer. We also present the
execution engine specification and the evaluation of the query optimizer.

In the next chapter, we present the mentioned cost model for distributed multiway
spatial join queries that supports the plan cost estimation.

CHAPTER 3
A Cost Model for Distributed Multiway Spatial
Join Queries

Chapter 2 introduced the main components of a distributed query optimizer and
the challenges that distributed systems and spatial data bring to the cost estimation of
multiway spatial join. In a query optimizer, the cost model deals with the prediction of
resource consumption (cost), before query execution. In this chapter, we propose and
evaluate a new model to estimate the cost of distributed multiway spatial join queries.

As well as being designed for multiway spatial join, the cost model proposed
here comprises a set of steps that also address the estimation of other kinds of spatial
queries, such as the already-presented windows and simple spatial join. Thus, we start by
introducing methods to estimate the cost of these simpler queries and then show how to
build intermediate histograms for more complex queries using the predicted intermediate
results. We also show how to use these intermediate histograms to compute the cost
of a multiway spatial join query. Furthermore, we present a set of statistical formulae
that provide more accurate estimation of join selectivity for real spatial datasets having
complex lines and polygons.

In Section 3.1, we discuss relevant metadata to support cost estimation and
propose a new multidimensional histogram data structure to store it. We also present new
methods to improve histogram construction and the precision of estimates. Section 3.2
presents a new method to calculate the number of histogram cells, i.e., the number
of subdivisions used to split each data dimension. Section 3.3 proposes a method to
gather metadata for histogram cells and a new strategy to determine the histogram cells
in which a spatial object needs to be represented. We introduce a new algorithm to
construct histograms for estimated intermediate results in Section 3.4, and show how
to use these histograms to compute the cost of an execution plan for a multiway spatial
join in Section 3.5. Section 3.6 presents the results of a set of experiments that were
designed to evaluate the proposed methods, and finally, Section 3.7 concludes with our
final considerations.

3.1 Multidimensional Grid Histograms 43

3.1 Multidimensional Grid Histograms
Besides the traditional use of cardinality, which is common in centralized sys-

tems, in this section we present the relevant metadata that needs to be captured from spa-
tial datasets to perform the cost estimation of multiway spatial join queries in distributed
systems.

The cardinality of a dataset, or of parts of it, is key to predict the size of the
join output, also referred to as join selectivity or join cardinality. However, the use of the
cardinality alone can lead to imprecise estimates. For instance, let us consider two spatial
datasets, 𝐴 and 𝐵, whose spatial extents overlap with each other, but with no spatial objects
intersecting each other. Alone, the cardinality value of the two datasets would lead to the
conclusion that an intersection join will have |𝐴| × |𝐵| results, i.e., the Cartesian product.
To improve this estimation, the length of spatial objects in each dimension of the data
is also relevant, as shown in [56]. If all objects are points, their average length in each
dimension will be zero and we can predict a better (still approximated) value for the join
output. In general, as the average length of objects increases, the probability of occurring
an intersection increases as well and this is also true for more complex spatial objects,
such as lines and polygons.

Regarding processing costs, predicate check algorithms from computational ge-
ometry, such as intersections, containments, and overlaps, often are time consuming to
process due to the high numbers of objects and their number of line segments [19]. Thus,
the cardinality and the total number of points1 of the objects are relevant in the estimation
of computational time.

Regarding communication cost, we considered the number of points, the size of
spatial objects, the size and location of data partitions and replicas, and the costs with the
data copy protocol as the key components in the estimation of communication costs when
transferring data partitions in the network.

Other informations associated with the dataset are also relevant in the definition
and refinement of data structure sizes, such as the dataset cardinality, the average length
of all spatial objects, and the associated standard deviation for each data dimension. For
instance, this information is relevant in the definition of the extent of data partitions.

Let 𝑑 be the number of data dimensions, 𝑟 the maximum number of replicas
permitted for a cell, and 𝑒1..𝑑 the number of cells in each dimension 𝑑. The data structure
that stores the metadata information for a dataset is illustrated in the pseudocode in
Algorithm 3.1. Each histogram cell is represented by a Histogram-Cell structure that
stores:

• the MBR, i.e., boundaries of the cell (line 6),
1The number of line segments of an spatial object can be determined based on the number of points.

3.1 Multidimensional Grid Histograms 44

• the cell cardinality, i.e., the number of objects within its boundaries (line 7),
• the proportional cardinality (line 8), explained in Section 3.3,
• the size of the objects in the cell (line 9), i.e., their total number of points,
• the total area of the objects that are polygons (line 10),
• a list of server identifiers that indicates the storage location of the cell (line 11), and
• the average length of the objects in the cell, for each data dimension (line 12).

Furthermore, global datasetmetadata is stored as: the type of objects in the dataset
(line 15), the dataset spatial extent or MBR (line 16), the dataset cardinality (line 17), the
average length of all objects in each dimension (line 18), the standard deviation of the
average length (line 19), and the 𝑑 dimensional matrix with the histogram cells (line 20).

The space complexity of the Dataset-Metadata structure in Algorithm 3.1
depends on the number of data dimensions, 𝑑, the number of cells in each of them, 𝑒𝑘,
1 ≤ 𝑘 ≤ 𝑑, and the number of replicas 𝑟. Considering the constant size of primary types
(int, double, and char) as occupying one unit of storage space, the space complexity is:

1 + 2𝑑 + 1 + 𝑑 + 𝑑 + (2𝑑 + 1 + 1 + 1 + 1 + 𝑟 + 𝑑)
𝑑

∏
𝑘=1

𝑒𝑘 = 𝛩
⎛
⎜
⎜
⎝
𝑑 + (𝑟 + 𝑑)

𝑑

∏
𝑘=1

𝑒𝑘
⎞
⎟
⎟
⎠

.

Algorithm 3.1: Data structures for dataset and histogram cell metadata.
1 struct MBR {
2 double min[𝑑]
3 double max [𝑑]
4 }
5 struct Histogram-Cell {
6 MBR mbr
7 double cardinality
8 double prop_cardinality
9 double obj_size

10 double areasum
11 int locations[𝑟]
12 double avg-length[𝑑]
13 }
14 struct Dataset-Metadata {
15 char type // Line or Polygon
16 MBR mbr
17 double cardinality
18 double avg-length[𝑑]
19 double stddev -avglen[𝑑]
20 Histogram-Cell histogram[𝑒1, ..., 𝑒𝑑] // A 𝑑-dimensional matrix
21 }

3.1 Multidimensional Grid Histograms 45

Figure 3.1 shows a partial illustration of a multidimensional histogram generated
for a dataset that represents the political limits of Brazilian municipalities. The histogram
captures important aspects of the dataset, as shown in the figure: at the top left corner of
Figure 3.1a, the cardinality is low because this region corresponds to the Amazon Forest,
where there are fewermunicipalities with vast sizes, thus resulting in lower cardinalities. In
contrast, Figure 3.1b shows the number of points for the same municipalities. The number
of points is much higher than in other regions because the area (extent) of the objects is
larger and more points are needed to represent their contour. Figure 3.1c, in turn, is a map
of the location of cells.

We assume that the gathering of metadata occurs during the loading of the
dataset into the system, and we use Welford’s online algorithm [47] to compute standard
deviations, in order to avoid multiple passes over data input. The load phase partitions the
data according to the defined histogram grid, one partition for each histogram cell, and
distributes the generated partitions to servers. We use a round-robin algorithm to distribute
data partitions. The server id is set in the locations field of the Histogram-Cell structure.
This field reflects the initial distribution of the partitions and is updated when the join
algorithm generates replicas during its execution.

We restricted our research to the cost model and have not provided a study of
the initial data distribution. We chose the round-robin method due to the lack of a data
location strategy, thus leaving room for future work to investigate strategies for data copy
reduction. Most likely, better algorithms can be developed or used to perform the data
distribution. Notwithstanding, all the methods proposed in this thesis work independently
of the method used for data distribution.

Longitude
Latitude

0
10
20
30
40
50

Ca
rd
in
ali

ty

(a)
Longitude

Latitude
0

2000
4000
6000
8000

10 000
12 000

Po
in
ts

(b)

Longitude

La
tit
ud

e

0
1
2
3
4
5
6
7
8

(c)
Figure 3.1: Multidimensional histogram for a two-dimensional

dataset that represents the political limits of Brazilian
municipalities. The graphs represent (a) the cardinal-
ity, (b) the number of points, and (c) the location of par-
titions (in gray tones). The scale on the right indicates
the server, from 1 to 8, for which the partitions were
assigned. A value of zero (white) represents an unas-
signed partition that contains no objects.

3.2 Split Method 46

3.2 Split Method
In this section, we present a method to define the number of cells in each

dimension of a grid histogram, based on dataset metadata. It is based on the following
reasoning:

• The number of cells determines the number of data partitions and consequently, a
small number of data partitions limits the degree of parallelism in query execution;

• The division of the dataset spatial extent by the average length of objects in each
dimension produces a number of cells that may improve the precision of the cost
estimation, as a result of the reduction in boundary effects;

• We should establish an upper bound on the number of cells due to the impact on
the query optimization process and on the overheads of processing and of moving
many small data partitions within the system. Thus, when we have a small average
length and a large spatial extent in the dataset, we establish an upper bound on the
number of divisions in each data dimension; and

• A small number of cells should also be avoided, as it would generate skewed sized
partitions, due to the skewed nature of spatial data.

We propose the following method to define the number of cells, as detailed
in Algorithm 3.2, where 𝑀𝐴 is the dataset’s metadata structure, 𝑑 is the number of
data dimensions, mi is the minimum number of cells in each dimension, and ma is the

Algorithm 3.2: Procedure Split-Method that defines the number of cells for
multidimensional grid histograms.
Split-Method(𝑀𝐴, 𝑑,mi ,ma)
1 // Let 𝑀𝐴.mbr𝑘 be the length of dataset extent in dimension 𝑘
2 for 𝑘 = 1 to 𝑑
3 objspan = 𝑀𝐴.avg-length[𝑘] + 𝑀𝐴.stddev -avglen[𝑘]
4 cells[𝑘] = 𝑀𝐴.mbr𝑘

objspan

5
6 // At least mi cells in each dimension
7 for 𝑘 = 1 to 𝑑
8 cells[𝑘] = max(mi , cells[𝑘])
9

10 // At most ma cells in the histogram

11 adjust = 𝑑

√
∏𝑑

𝑘=1 cells[𝑘]
ma

12 if adjust > 1
13 for 𝑘 = 1 to 𝑑
14 cells[𝑘] /= adjust
15 return cells

3.3 Gathering Metadata for Histogram Cells 47

maximum number of cells for a histogram. Lines 2–4 define an initial number of cells for
each dimension, based on the spatial extent of the dataset divided by the average length
plus the standard deviation of all objects. Lines 7–8 ensure the generation of at least a
feasible minimum number of cells and lines 11–14 proportionally reduce the number of
cells when it reaches the specified maximum.

3.3 Gathering Metadata for Histogram Cells
When building a histogram, each object in a dataset needs to be hashed into the

histogram grid to find the cell, or the set of cells, that it intersects with. In this section,
we propose a new method of hashing a spatial object, to improve the accuracy of cost
estimation. Furthermore, we show how to fill the metadata fields of each histogram cell.

In a similar way aswith global dataset metadata, somemetadata fields are trivially
gathered. In a single pass over the dataset objects we can calculate:

• The cardinality field, which produces the number of spatial objects that overlap the
cell boundaries, whether they are entirely contained within the cell or not;

• The obj_size field, obtained by summing up the number of points of each object
that intersects a cell, including the points outside the cell if any; and

• The avg-length field, which stores the average length of the objects that overlap
with the cell boundaries in each dimension. When objects overlap more than one
cell, this field considers only the length of the MBR of objects within the cell.

To calculate prop_cardinality , we increment the value stored in each cell based
on the proportion of the area of intersection between the spatial object’s MBR and the
histogram cell boundaries, and the total area of the spatial object’s MBR. Formally, let
𝑀𝐴 be the metadata structure for the dataset 𝐴, and let 𝑜 ∈ 𝐴 be an object of the dataset.
The proportional cardinality of a cell ℎ ∈ 𝑀𝐴 is given by (3-1). We refer to this method
as the Proportional Overlap (PO) method.

ℎ.prop_cardinality = ∑
𝑜∈𝐴

area(𝑜 ∩ ℎ.mbr)
area(𝑜) (3-1)

Figure 3.2 illustrates the hash process of a spatial object in a histogram. In the
MBR center method (left), the center of the object’s MBR identifies the histogram cell to
which the object is assigned. The cardinality of that cell is thus incremented by one. In
contrast, the Proportional Overlap method (right) increments the cardinality of each cell
that intersects the object’s MBR by adding the proportion obtained in (3-1).

3.4 Building Intermediate Histograms 48

Histogram

Spatial Extent

Spatial Object
MBR

area(𝑜 ∩ ℎ.mbr)
area(𝑜)

Figure 3.2: A spatial object hashed using the MBR Center method
(left) and the Proportional Overlap method (right).

3.4 Building Intermediate Histograms
In this section, we introduce algorithms to build an intermediate histogram, based

on the original histograms for two given datasets. The intermediate histogramwill be a part
in the process of estimating the cost of execution plans for multiway spatial join queries,
as one of the inputs for intermediate steps.

Here we focus on the intersection predicate, the most frequent predicate used
for spatial join queries [12]. Nonetheless, our methods have applicability to similar pred-
icates, such as “contains”, “within”, “touches”, and “disjoint”, if we switch the explicit
usage of intersection by a matching predicate algorithm and an estimation formula. Other
predicates, such as “distance”, may require more work due to significant differences in the
structure of estimation [17].

Procedure Build-Intermed-Histogram in Algorithm 3.3 defines the process
of building an intermediate histogram. Let 𝑀𝐴 and 𝑀𝐵 be the metadata for two given
datasets, and let 𝑀𝑅 be the resulting estimated metadata structure that will be generated
by the procedure. Lines 1–9 initialize the 𝑀𝑅 structure, identifying the area of interest
(line 2) and copying the limits of the reference cells and average lengths. To improve
the estimate precision, the method uses as a reference the dataset (𝐴 or 𝐵) specified in
the predicate of the plan step that follows the step being estimated, relabelling it as 𝑀𝑁
to simplify the algorithm (line 3). Lines 11–17 loop through each intersecting cell pair
ℎ𝐴, ℎ𝐵, identifying the respective 𝑔 cell on 𝑀𝑅, calling the auxiliary procedure Estimate-
Cardinality-With-AvgLengthFix to estimate the proportional cardinality (line 14). The
proportional cardinality is used to compute the cardinality (line 16) and object size (line
17), based on the average of previous values multiplied by the estimated new cardinality
for 𝑔.

3.4 Building Intermediate Histograms 49

Algorithm 3.3: Procedure Build-Intermed-Histogram that generates an inter-
mediate metadata for a spatial join between datasets 𝐴 and 𝐵.
Build-Intermed-Histogram(𝑀𝐴, 𝑀𝐵)
1 𝑀𝑅 = new Dataset-Metadata
2 𝑀𝑅.mbr = MBR-Intersection(𝑀𝐴.mbr , 𝑀𝐵.mbr)
3 Let 𝑀𝑁 be 𝑀𝐴 or 𝑀𝐵, according to the next step predicate
4
5 for each ℎ ∈ 𝑀𝑁 .histogram ∣ ℎ.mbr ∩ 𝑀𝑅.mbr ≠ ∅
6 𝑔 = new Histogram-Cell
7 𝑔.mbr = ℎ.mbr
8 𝑔.avg-length = ℎ.avg-length
9 append (𝑔, 𝑀𝑅.histogram)

10
11 for each 𝑎 ∈ 𝑀𝐴.histogram , 𝑏 ∈ 𝑀𝐵.histogram ∣ 𝑎.mbr ∩ 𝑏.mbr ≠ ∅
12 Let 𝑔 be the respective cell of the pair 𝑎, 𝑏 on 𝑀𝑅
13 Let ℎ be 𝑎 or 𝑏, according to the choice on line 3
14 𝑐 = Estimate-Cardinality-With-AvgLengthFix(𝑎, 𝑏)
15 𝑔.prop_cardinality += 𝑐
16 𝑔.cardinality += ℎ.prop_cardinality

ℎ.cardinality ∗ 𝑐
17 𝑔.obj_size = ℎ.obj_size

ℎ.cardinality ∗ 𝑔.cardinality
18
19 return 𝑀𝑅

Before explaining the procedure Estimate-Cardinality-With-AvgLengthFix,
we introduce improved estimates to predict intersections between spatial objects, replacing
the more general ones given in (2-2) and (2-3).

The equation we propose next (3-2) addresses the imprecision that the MBR
induces in the average length field, regarding complex spatial objects (lines and polygons).
For instance, let us consider object 𝑜 in Figure 3.3. The average length of 𝑜 in both
dimensions (𝑥 and 𝑦) are the same as if it is a square occupying all of the cell space.
However, the probability of intersection of 𝑜 with another object remains at 0.5, due to
its format. This issue also arises for line objects not parallel to the sides of a histogram
cell. Indeed, spatial objects of the same dataset frequently represent the same natural
phenomenon and do not overlap with each other. In other words, in each dimension,
the sum of the length of all objects is less or equal to the cell length. However, the
MBR approximation can lead to an average length that distort this behavior, i.e., the
average length multiplied by the cell cardinality is larger than the cell length, causing
a larger probability of intersection. Thus, we propose that the largest average length for
all dimensions be proportionally reduced considering the second largest average length,
according to (3-2), where ℎ is a histogram cell, ℎ.mbr 𝑖 is the length of cell ℎ in dimension
𝑖, ℎ.mbr 𝑗 is the length of cell ℎ in dimension 𝑗, 𝑙 is the average length vector (i.e.,

3.4 Building Intermediate Histograms 50

𝑜

𝑜.mbr

avg-length[𝑥]

avg-length[𝑦]

𝑦

𝑥

Histogram cell boundary

Figure 3.3: Illustration of the error introduced by MBR on the av-
erage length for a 2d object (𝑜).

ℎ.avg-length), and 𝑖 and 𝑗 are the indices of the dimensions with largest and second largest
average length.

fixavgl (ℎ, 𝑖, 𝑗) = min (𝑙[𝑖], ℎ.mbr 𝑖
(𝑙[𝑗] ⋅ ℎ.cardinality)/ℎ.mbr 𝑗) (3-2)

The second set of equations we propose, (3-3) to (3-5), is used to estimate
intersections between two datasets, one with objects of type line and the other with objects
of type polygon. These equations determine the cardinality (𝐽𝑙𝑝) of a join between the
objects of two histogram cells (𝑎 and 𝑏), where mbr𝑘 is the cell length in dimension 𝑘,
𝑙𝑎𝑘 and 𝑙𝑏𝑘 are the average length for 𝑎 and 𝑏 in dimension 𝑘, respectively, ̄̄𝑎 and ̄̄𝑏 are
the cardinalities of the cells, and 𝛾 indicates the factor by which we have to increase the
average length of polygons in each dimension to fill the entire cell space. The formulae
works by finding how many times a line of length 𝑙𝑎𝑘 intersects a scaled polygon of length
𝑙𝑏𝑘 ∗ 𝛾 . It is used to reduce the returned value proportionally to the density 𝜌 of polygons
in 𝑏, calculated using their area 𝑏.areasum.

𝜌 = 𝑏.areasum
∏𝑑

𝑘=1 𝑏.mbr𝑘
(3-3)

𝛾 = 𝑑
√√√
⎷

∏𝑑
𝑘=1 𝑏.mbr𝑘
̄̄𝑏 ∏𝑑

𝑘=1 𝑙𝑏𝑘
(3-4)

𝐽𝑙𝑝(𝑎, 𝑏) = ̄̄𝑎 ⋅ 𝜌 ⋅
𝑑

∏
𝑘=1

max (1.0, 𝑙𝑎𝑘
𝑙𝑏𝑘 ⋅ 𝛾) (3-5)

Finally, we introduce relations (3-6) to (3-8) to estimate the number of intersec-
tions between two datasets with line objects. They can be used to determine the join cardi-
nality (𝐽𝑙𝑙) between two histogram cells 𝑎 and 𝑏, where ℎ[𝑥] is the length of a line in cell
𝑥, based on the average length, assuming that it is a straight line, and 𝑙𝑎𝑏𝑘 is the length of

3.4 Building Intermediate Histograms 51

the intersection between 𝑎 and 𝑏 in dimension 𝑘. The other variables are defined as above.
0 ≤ 𝜂 ≤ 1 is a coefficient of line intersection used to reduce the number of intersections,
observing the minimum of the probability that two arbitrary line segments intersects each
other and the ratio between the average line lengths for the two cells.

The constant 133⁄432 was used as an upper bound limit approximation coming from
the following observation. We are interested in the probability of intersection between two
line objects. Suppose that they are two line segments and note that there are three ways of
pairing them: horizontally aligned, vertically aligned and intersecting each other (similar
to an X or T shape). Out of these three ways of pairing them, we are interested in the latter,
i.e., 1⁄3. Additionally, it is more likely that an intersection between two line objects from
distinct datasets occurs when they cross each other (i.e., similar to an X shape) instead of
in a perpendicular format (similar to a T shape). Thus, the intersection defines the two
diagonals of a convex quadrilateral. To form a convex quadrilateral, from the four points
that defines the quadrilateral (the extreme points of the two segments) one needs to fall
outside the triangle defined by the other three. As the probability of the point falling within
the triangle is known to be 11⁄144 [84], the probability of it falling outside is 133⁄144 and hence
the required probability is 1/3 ⋅ 133/144 = 133/432.

ℎ[𝑥] =
√√√
⎷

𝑑

∑
𝑘=1

(𝑙𝑥𝑘)2 (3-6)

𝜂 = min (
133
432, min(ℎ[𝑎], ℎ[𝑏])

max(ℎ[𝑎], ℎ[𝑏])) (3-7)

𝐽𝑙𝑙(𝑎, 𝑏) = ̄̄𝑎 ⋅ ̄̄𝑏 ⋅ 𝜂 ⋅
𝑑

∏
𝑘=1

min (1.0, 𝑙𝑎𝑘 + 𝑙𝑏𝑘
𝑙𝑎𝑏𝑘) (3-8)

For two datasets with polygon objects, we use (2-3), but fix the average length
vector by (3-2). We refer to it below as 𝐽𝑝𝑝.

The auxiliary procedure Estimate-Cardinality-With-AvgLengthFix, Algo-
rithm 3.4, uses these equations to calculate the proportional cardinality (proc-cardinality
field of Histogram-Cell). It receives two histogram cells as input (𝑎 and 𝑏) and returns
the estimated cardinality of the set of intersections between the objects in the two cells.
Lines 4–10 apply the average length reduction, the first proposed modification (3-2). Line
12 identifies the intersection, inter , between 𝑎 and 𝑏, due to the boundaries of the two
histogram cells being different, i.e., they may partially overlap each other because each
dataset has particular grid cell limits. The algorithm then estimates the cardinality that the
window query, defined by inter , will return for 𝑎 (line 14) and 𝑏 (line 15). These cardinal-
ities (̄̄𝑎 and ̄̄𝑏) are used when computing the join cardinality (line 16) by using the adequate
equation (𝐽𝑙𝑝, 𝐽𝑙𝑙, or 𝐽𝑝𝑝) according to the type of the objects in the datasets.

3.5 Estimating the Cost of an Execution Plan 52

Algorithm 3.4: Procedure Estimate-Cardinality-With-AvgLengthFix to esti-
mate the resulting cardinality for an intersection between two histogram cells 𝑎
and 𝑏.
Estimate-Cardinality-With-AvgLengthFix(𝑎, 𝑏)
1 Let 𝑎.mbr𝑘 be the length of 𝑎.mbr in dimension 𝑘
2 Let 𝑏.mbr𝑘 be the length of 𝑏.mbr in dimension 𝑘
3
4 𝑙𝑎 = 𝑎.avg-length
5 𝑖, 𝑗 = argmax 𝑘=1..𝑑(𝑎.avg-length[𝑘])
6 𝑙𝑎𝑖 = fixavgl (𝑎, 𝑖, 𝑗)
7
8 𝑙𝑏 = 𝑏.avg-length
9 𝑖, 𝑗 = argmax 𝑘=1..𝑑(𝑏.avg-length[𝑘])

10 𝑙𝑏𝑖 = fixavgl (𝑏, 𝑖, 𝑗)
11
12 inter = 𝑎.mbr ∩ 𝑏.mbr
13 Let inter𝑘 be the length of inter in dimension 𝑘
14 ̄̄𝑎 = 𝑎.prop_cardinality ∗ ∏𝑑

𝑘=1 min (1, 𝑙𝑎𝑘+inter𝑘
𝑎.mbr𝑘)

15 ̄�̄� = 𝑏.prop_cardinality ∗ ∏𝑑
𝑘=1 min (1, 𝑙𝑏𝑘+inter𝑘

𝑏.mbr𝑘)

16 return

⎧⎪
⎪
⎨
⎪
⎪⎩

𝐽𝑙𝑝(𝑎, 𝑏), if 𝑎 is from a line dataset and 𝑏 from a polygon one
𝐽𝑙𝑝(𝑏, 𝑎), if 𝑏 is from a line dataset and 𝑎 from a polygon one
𝐽𝑙𝑙(𝑎, 𝑏), if 𝑎 and 𝑏 are both from line datasets
𝐽𝑝𝑝(𝑎, 𝑏), otherwise.

3.5 Estimating the Cost of an Execution Plan
In this section, we present the procedure Estimate-Plan-Cost (Algorithm 3.5),

that estimates the cost of an execution plan for a multiway spatial join query.
Naturally, the costs associated with the query execution need to be estimated

based on the protocols used to transfer data through distributed computers and observing
the time complexity of algorithms that compute the spatial predicate. Due to the diversity
of existing algorithms to perform predicate checks, there is also a diversity of options
to specify or estimate the cost. What we propose next is a method that conforms to our
algorithm and environment choice. Nonetheless, any given cost formula can be integrated
within the procedure and we recall that this is the main characteristic of a cost optimizer.
Most relevant is the precision of the cost estimate as it imposes additional challenges due
to the impact it has on the balance of the query execution.

The size of data partitions determines the cost of communication. It can be
estimated based on the size and location of data partitions. As we have limited our research
to in-memory data processing, we assume that there is no local I/O cost.

3.5 Estimating the Cost of an Execution Plan 53

The cost of predicate checking is estimated based on the time complexity of
the algorithms involved. It is composed of three parts: 𝑖) an initial step that prepares the
spatial object geometries from one partition2, 𝑖𝑖) the filtering step, i.e., the number ofMBR
intersection checks, defined by the Cartesian product of objects in the two partitions, and
𝑖𝑖𝑖) the refinement step, that performs the predicate algorithm in each filtered result.

The execution plan is represented by a binary tree, with root node 𝑃 , whose leaves
contain a pointer to the dataset metadata and the intermediate nodes have two pointers to
their two sub-trees. Estimate-Plan-Cost (Algorithm 3.5) is called for the root node 𝑃 of
the plan and recursively calls itself until it finds a step of the plan composed of two leaf
nodes (lines 1–4). The procedure estimates 𝑀𝑅 for the join between datasets 𝑀𝐴 and 𝑀𝐵
(line 7) using the procedureBuild-Intermed-Histogram, previously presented. Next, the
costs that will be used to schedule the tasks are estimated: ̂𝑐, ̄𝑐 and 𝑤. A loop estimates ̄𝑐

Algorithm 3.5: Procedure Estimate-Plan-Cost to estimate the costs of an exe-
cution plan 𝑃 .
Estimate-Plan-Cost(𝑃 , 𝑓 𝑞, plan_costs)
1 if 𝑃 .left is intermediate
2 𝑃 .left = Estimate-Plan-Cost(𝑃 .left , 𝑓 𝑞, plan_costs)
3 if 𝑃 .right is intermediate
4 𝑃 .right = Estimate-Plan-Cost(𝑃 .right , 𝑓 𝑞, plan_costs)
5 𝑀𝐴 = 𝑃 .left
6 𝑀𝐵 = 𝑃 .right
7 𝑀𝑅 = Build-Intermed-Histogram(𝑀𝐴, 𝑀𝐵)
8 pairs = {𝑎, 𝑏 ∣ 𝑎 ∈ 𝑀𝐴.histogram , 𝑏 ∈ 𝑀𝐵.histogram , 𝑎.mbr ∩ 𝑏.mbr ≠ ∅}
9 for each distinct 𝑏 ∈ pairs

10 for 𝑖 = 1 to 𝑚
11 ̄𝑐𝑖𝑏 += 𝑖 ∉ 𝑏.locations ? 𝑏.obj_size : 0
12 for each distinct 𝑎 ∈ pairs
13 for 𝑖 = 1 to 𝑚
14 ̂𝑐𝑖𝑎 += 𝑖 ∉ 𝑎.locations ? 𝑎.obj_size : 0
15 for each 𝑏 that forms a pair with 𝑎
16 for 𝑖 = 1 to 𝑚
17 𝑤𝑎 += 𝑎.cardinality ∗ 𝑏.cardinality // MBR check
18 𝑤𝑎 += 𝑏.obj_size // point in polygon tests [43]
19 𝑤𝑎 += prep_cost(𝑎) // Cost to prepare 𝑎 geometries
20 𝑠 = Schedule-Plan-Step(𝑀𝑅, stepf (𝑓 𝑞), ̂𝑐, ̄𝑐, 𝑤)
21 Aggregate-Costs(plan_costs , ̂𝑐, ̄𝑐, 𝑤, 𝑠)
22 return 𝑀𝑅

2Preparation of geometries is a technique used in spatial libraries to speed up the execution of repeated
intersection checks of target geometries. The preparation consists of building a small index with the line
segments of the geometry and caching it for reuse. The cost of the index building is amortized during the
predicate check (https://trac.osgeo.org/geos/wiki/PreparedGeometry).

3.6 Cost Model Evaluation 54

with the cost of moving each object 𝑏 to each server 𝑖 (lines 9 to 11). The same estimate
is computed for 𝑎 and ̂𝑐 (lines 12 to 14). To estimate ̂𝑐 and ̄𝑐, the procedure considers
the actual locations of each partition, its replicas, and which server 𝑖 to assign them to,
1 ≤ 𝑖 ≤ 𝑚, where 𝑚 is the number of servers used to execute the query. Lines 15 to 19
loop through intersecting pairs of cells to estimate the load or CPU cost, 𝑤, conforming
with the three previously mentioned costs for predicate checking. The procedure calls a
routine to perform the scheduling of intermediate results (line 20), i.e., where each pair
defined by 𝑎 (and its accompanying 𝑏’s) will be processed. This procedure uses a parameter
𝑓 𝑞 and the function stepf , both defined later in Chapter 6. Finally, the procedure uses the
returned schedule 𝑠 to perform an aggregation of the step costs into the global plan cost
(line 21) – a simple aggregation of costs according to 𝑠.

Due to the relevance of the procedure Schedule-Plan-Step in this thesis, we
dedicate Chapter 4 to introduce it and evaluate its implementation. This procedure defines
a schedule for the plan, i.e., where each resulting cell of 𝑀𝑅 is to be processed, and
consequently, the query processing balance and the communication cost incurred.

3.6 Cost Model Evaluation
This section covers the methodology and experiments designed to evaluate the

cost model methods proposed earlier in this chapter.
Each proposed method has an impact on the overall precision of the cost model.

We attempted to isolate the error produced by each of them. For this reason, somemethods
were evaluated using simple window queries. We recall from Section 3.4 that window
query estimation techniques are used to compose the more complex estimate of join
selectivity and thus, it is reasonable to check its performance. The methods designed to
build intermediate histograms for two datasets are evaluated using spatial join queries. To
evaluate the overall precision of the cost model, as well as to evaluate the estimation of
the data communication cost, the scheduling of execution plans is necessary. We present
this evaluation in Chapter 6, after we introduce scheduling methods in Chapter 4.

We chose a set of real spatial datasets, obtained from the Brazilian Institute of
Geography and Statistics3 (IBGE), from the LAPIG Laboratory4 of the Institute of Social
and Environmental Studies (IESA) at UFG and from the Digital Chart of the World5

(DCW). Table 3.1 shows the selected datasets and their characteristics. All datasets have
2-dimensional objects, which represent geospatial objects on the Earth’s surface. We
downloaded each dataset from these sources in the well-known Shapefile format (SHP)

3www.ibge.gov.br
4Image Processing and Geoprocessing Laboratory: www.lapig.iesa.ufg.br/lapig/
5http://gis-lab.info/qa/vmap0-eng.html

3.6 Cost Model Evaluation 55

and used the GDAL6 and GEOS7 libraries to extract and process the geometry of each
spatial object inside them.

In the experiments using window queries, a set of randomly positioned windows
is generated for each dataset. They have different sizes, varying from 0.1% to 30% of the
dataset spatial extent.We also indicate other parameters used in each experiment. Table 3.2
presents the join queries used in the experiments. There are 20 queries assembled using
the datasets listed in Table 3.1, providing an all-to-all combination of the first five datasets
and also an all-to-all combination of the last five datasets. This set has queries joining all
types of spatial objects, i.e., line ⋈ line, line ⋈ polygon, and polygon ⋈ polygon, as well
as distinct dataset sizes. The join predicate used is intersects. We refer to these queries in
the text and figures by their number, ranging from 𝐽1 to 𝐽20.

We ran all experiments in a m4.4xlarge Amazon EC2 machine, with an Intel(R)
Xeon(R) CPU, E5-2686 v4 model, running at 2.30GHz and with 64GB of RAM. Each
dataset is loaded from disk to memory before the execution. The experiments presented

Table 3.1: Datasets used in experiments.
Name Abrev. Type Cardinality SHP File Size (MB)

Brazilian datasets (IBGE and LAPIG)
Fire alerts A Polygons 32,578 11.2
Hydrography H Lines 226,963 64.5
Roads R Lines 51,646 15.2
Counties C Polygons 5,564 38.8
Vegetation V Polygons 2,140 4.7

World-wide datasets (DCW)
Rivers RI Lines 943,638 243.2
Rails RA Lines 194,261 28.7
Hydrography Inland HI Polygons 338,860 136.7
Elevation Contour EC Lines 703,574 572.5
Crops CR Polygons 123,746 69.3

Table 3.2: Spatial Join queries used in experiments.
Name Query Join Cardinality Name Query Join Cardinality
𝐽1 A ⋈ H 4,868 𝐽11 RI ⋈ RA 58,885
𝐽2 A ⋈ R 3,395 𝐽12 RI ⋈ HI 530,782
𝐽3 A ⋈ C 34,261 𝐽13 RI ⋈ EC 449,309
𝐽4 A ⋈ V 34,672 𝐽14 RI ⋈ CR 269,301
𝐽5 H ⋈ R 55,766 𝐽15 RA ⋈ HI 5,975
𝐽6 H ⋈ C 268,369 𝐽16 RA ⋈ EC 47,106
𝐽7 H ⋈ V 252,830 𝐽17 RA ⋈ CR 121,007
𝐽8 R ⋈ C 70,304 𝐽18 HI ⋈ EC 22,128
𝐽9 R ⋈ V 63,339 𝐽19 HI ⋈ CR 79,002
𝐽10 C ⋈ V 15,678 𝐽20 EC ⋈ CR 234,900

6Geospatial Data Abstraction Library: www.gdal.org
7Geometry Engine, Open Source: https://trac.osgeo.org/geos/

3.6 Cost Model Evaluation 56

next do not require a distributed environment to run, as they capture only the estimated
cardinality (or selectivity) and compare it with the real cardinality obtained by performing
the spatial query over the dataset.

3.6.1 Evaluation of the Hash Method
This section presents the evaluation of the Proportional Overlap method (PO),

which computes the cardinality and number of points for multidimensional histogram
cells, as described in Section 3.3. The experiment consists of creating, for each dataset
in Table 3.1, two sets of multidimensional histograms: the set 𝐴, using the PO method
to hash spatial objects over the grid cells and the set 𝐵, using the MBR Center method
(MBRC). Each set has histograms of sizes 𝑟×𝑟, 𝑟 ∈ 𝑅 = {25, 50, 100, 200, 300, 400, 500}.
For each histogram set 𝑡 ∈ {𝐴, 𝐵} and histogram size 𝑟, a set 𝒬𝑡

𝑟𝑠 of window queries
with sides length equal to 𝑠% of the dataset spatial extent in each dimension, 𝑠 ∈ 𝑆 =
{0.1, 0.2, 0.5, 1, 2.5, 5, 10, 15, 20, 25, 30}, were randomly generated. A total of 100 queries
for each histogram and query size were randomly generated, i.e., |𝒬𝑡

𝑟𝑠| = 100 ∀ 𝑟 ∈ 𝑅, 𝑠 ∈
𝑆. The estimated selectivity of each query, 𝑒𝑖, is obtained using (2-2). The real selectivity
𝑟𝑖 is gathered executing the query over the respective dataset. We summarized query pre-
cision for each histogram type 𝑡, with size 𝑟 and query size 𝑠, using the relative error sum
(RES), shown in (3-9). Finally, the RES for PO is compared with the RES forMBRC to ob-
tain the PO improvement: 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 = (𝑅𝐸𝑆(𝐵, 𝑟, 𝑠) − 𝑅𝐸𝑆(𝐴, 𝑟, 𝑠))/𝑅𝐸𝑆(𝐴, 𝑟, 𝑠).

𝑅𝐸𝑆(𝑡, 𝑟, 𝑠) = ∑
𝑞𝑖∈𝒬𝑡

𝑟𝑠

|𝑟𝑖 − 𝑒𝑖| (3-9)

Besides evaluating a significantly large set of window query sizes, we are partic-
ularly interested in window queries that are smaller than the histogram cell, for example,
𝑠 < 4 for 𝑟 = 25 × 25. The rationale for that is because when estimating spatial join se-
lectivity (Algorithm 3.4, lines 6 and 10), the usage of distinct grid sizes for each dataset
requires the estimation of the number of objects in the intersection of two grid cells. As
the overlap of two grid cells of distinct datasets is always smaller than the grid cell itself,
a window selection smaller than the size of the grid cell is performed.

Figure 3.4 presents the results of the experiment. The chart shows the average
improvement of the PO over the MBRC method, for all query sizes, while estimating the
selectivity of window queries for a set of datasets and histogram sizes. For all datasets
and almost all histogram sizes, the PO method produced improved estimates compared
to MBRC. For each dataset, there is a histogram size for which the improvement of PO
achieves its maximum and we observe three distinct behaviors in this respect. For the
first two datasets, counties (C) and vegeta (V), having polygonal objects with large object

3.6 Cost Model Evaluation 57

-50

0

50

100

150

200

250

300

vegeta counties roads hydro crops rails hydroinl elevcont alerts rivers

Im
pr
ov

em
en

t(
%
)

Datasets

25x25
50x50

100x100
200x200

300x300
400x400
500x500

-

-
- - - - - -

-

-

-

-
- - - - - -

-

-

-
-

-
-

- - - -
-

-

- -
-

-

- - -
-

- -- - -
-

- - -
- -

-
- - -

- - - -
- -

-

- - -
- - - -

- -

-

Figure 3.4: Improvement of the selectivity estimation using the PO
hashing method.

extents, the improvement of PO decreases as the histogram size increases, showing that
smaller histograms are better for these datasets – an expected scenario due to dataset
characteristics that cause high boundary effects in the histograms. The second group
of datasets, roads (R) and hydro (H), presents an improvement in a bell curve format
that indicates that a mid-range histogram size will provide a better improvement in the
estimated selectivity. Finally, for the third group of datasets, from crops (CR) to rivers
(RI), the improvement follows the increase in the histogram size.

The chart in Figure 3.4 also shows error bars indicating the maximum and mini-
mum improvement for all query sizes, and the red ticks at each bar represent the standard
deviation. For all datasets, there is a histogram size for which PO significantly improves
the selectivity estimation, with a small or nonexistent negative minimum. A negative min-
imum indicates that MBRC performs better than PO for some specific query size. To fur-
ther illustrate what happens in these scenarios, Figure 3.5 presents the improvement for
all histogram and query sizes, for two contrasting datasets: counties and rivers.

In the counties dataset (Figure 3.5(a)), PO improves the selectivity estimation for
histograms of size 25 × 25 and 50 × 50 in all query sizes. It also produces improvement for
all other histograms in query sizes from 0.1% to 2.5%. For query sizes from 5% to 30% and
histograms sizes greater than or equal to 100 × 100, MBRC outperforms PO. The cause
of this behavior is that PO underestimates the selectivity for larger queries, with cell sizes
smaller than the length of objects, due to the extreme boundary effect that induces objects
to be hashed in a high number of cells. MBRC produces a more precise estimation due
to the large size of the query, which mitigates the error caused by the accounting of the
spatial object in only one cell.

3.6 Cost Model Evaluation 58

-50

0

50

100

150

200

25x25 50x50 100x100 200x200 300x300 400x400 500x500

Im
pr
ov

em
en

t(
%
)

Counties (a) 0.1
0.2
0.5

1
2.5
5

10
15
20

25
30

0

50

100

150

200

25x25 50x50 100x100 200x200 300x300 400x400 500x500

Im
pr
ov

em
en

t(
%
)

Histogram size

Rivers (b)

Figure 3.5: Improvement of selectivity estimation for datasets
Counties and Rivers on all histogram and query sizes.

In the rivers dataset (Figure 3.5(b)), which has a world-wide spatial extent and
spatial objects with smaller average lengths, the improvement of PO increases as the
histogram size increases. There is no significant improvement for histograms of size 25×25
and 50 × 50. For small histograms, due to the smaller boundary effect caused by the large
size of cells, PO acts in almost the same way as MBRC.

Provided that an adequate histogram size is chosen based on the average length of
dataset objects (Split Method), our conclusion is that PO increases the range of possible
sizes for histograms and significantly improves the precision of estimated selectivity of
window queries. This may provide a higher number of partitions for a dataset, resulting in
a possibly higher degree of parallelism in distributed systems.

3.6.2 Evaluation of the Split Method
To evaluate the proposed split method, defined in Algorithm 3.2, we generated a

histogram with the size returned by procedure Split-Method and using the PO method,
for each dataset listed in Table 3.1.We set the parametermi = 5, that produces a histogram
of at least 25 cells andma = 29.127. Larger histogram sizes can be used for some datasets,
but we keep this maximum size to limit the size of histogram structure in memory to at
most ≈2Mb, considering the size of the histogram cell data structure in our implementation
(72 bytes). We also measured the average number of wrongly estimated objects per query
(WEO), when estimating window queries with the sizes used in the previous section
(𝑆 set).

3.6 Cost Model Evaluation 59

Table 3.3 presents the resulting histogram sizes and the WEO for each dataset.
Comparing the resulting histogram sizes with the respective histogram size in Figure 3.4,
we can see that the suggested size is nearly always close to the point of largest improve-
ment. Even histograms limited by the ma limit exhibit considerable improvement. For
instance, the Hydrography histogram (126 × 130) lies in between 100 × 100 and 200 × 200
in Figure 3.4, the two histograms with the largest improvement for this dataset.

With respect to the estimation error WEO, the result presents a small number of
wrong objects when 𝑠 = 0.1. AlthoughWEO increases with the query size, the larger value
has less significance in the result set of the query, because, in general, large queries have
larger result sets. In summary, the hash and split methods provide a considerable precision
when estimating window queries selectivity. The next section will evaluate the estimation
of spatial join selectivity.

Table 3.3: Histogram size determined by Split-Method and the
number of wrong estimated objects (WEO) per dataset,
in average, for 𝑠 = 0.1 and for 𝑠 = 30.

Dataset Hist. size WEO avg WEO 𝑠 = 0.1 WEO 𝑠 = 30
Vegetation 7 × 7 7.98 0.14 19.01
Alerts 133 × 219 4.92 0.58 7.68
Counties 14 × 13 12.12 0.28 25.18
Roads 77 × 75 10.82 0.76 20.23
Hydrography 126 × 130 17.30 0.99 38.83
Crops 203 × 78 16.83 1.17 36.63
Rails 249 × 118 22.76 2.61 40.86
Hydr. Inland 214 × 137 25.72 1.86 45.23
Elev. Countour 181 × 161 45.52 2.72 103.45
Rivers 233 × 125 52.04 2.79 101.00

3.6.3 Evaluation of Join Selectivity
This section presents the evaluation of the intermediate histogram generated by

the procedure Build-Intermed-Histogram, in Algorithm 3.3, referred to as the IHWAF
method (an acronym for Intermediate Histogram With Average Length Fix). We made
the estimate for each join query in Table 3.2 and captured the cardinality of the resulting
histogram (𝑀𝑅) to compare it with the real cardinality obtained by performing the join
query over the datasets. Besides providing an estimate for a simple join query with only
two datasets, precise estimates provide better intermediate metadata, which can be used
later to estimate multiway spatial join queries.

Table 3.4 presents the results of the experiment. They are grouped by the types
of spatial objects in the query (L ⋈ L for two datasets with line objects, P ⋈ P for two
datasets with polygon objects, and L ⋈ P or P ⋈ L for datasets with line and polygon
objects), ordered by the IHWAF relative error. The first three columns indicate the query,

3.6 Cost Model Evaluation 60

Table 3.4: Estimated Cardinality Results for Join Queries using the
IHWAF and MP methods.

Query Type Cardinality Estimated Cardinality Relative Error %
IHWAF MP IHWAF MP

𝐽13 L ⋈ L 449,309 443,249 1,843,256 1.3 310.2
𝐽11 L ⋈ L 58,885 57,553 241,473 2.3 310.1
𝐽5 L ⋈ L 55,766 67,781 398,869 21.5 615.3
𝐽16 L ⋈ L 47,106 61,722 237,809 31.0 404.8
𝐽4 P ⋈ P 34,672 35,281 63,746 1.8 83.9
𝐽3 P ⋈ P 34,261 32,837 82,560 4.2 141.0
𝐽10 P ⋈ P 15,678 17,442 31,707 11.3 102.2
𝐽19 P ⋈ P 79,002 53,255 42,986 32.6 45.6
𝐽17 L ⋈ P 121,007 126,257 66,298 4.3 45.2
𝐽7 L ⋈ P 252,830 264,011 534,048 4.4 111.2
𝐽8 L ⋈ P 70,304 65,310 250,912 7.1 256.9
𝐽9 L ⋈ P 63,339 58,505 186,602 7.6 194.6
𝐽6 L ⋈ P 268,369 290,029 819,124 8.1 205.2
𝐽14 L ⋈ P 269,301 215,062 282,484 20.1 4.9
𝐽15 P ⋈ L 5,981 7,535 40,272 26.0 573.3
𝐽20 L ⋈ P 234,900 172,173 269,542 26.7 14.7
𝐽18 L ⋈ P 22,128 28,374 277,125 28.2 1,152.4
𝐽2 P ⋈ L 3,395 2,274 60,287 33.0 1,675.8
𝐽1 P ⋈ L 4,868 2,048 69,045 57.9 1,318.3
𝐽12 L ⋈ P 531,269 63,287 414,137 88.1 22.0
Average 20.9 379.4
Standard deviation 21.1 461.5

the type of spatial objects, and the real cardinality. Columns IHWAF and MP indicate the
estimated cardinality and the relative error, calculated when using our proposed method
(IHWAF) and the methods proposed by Mamoulis and Papadias [56] (MP). For IHWAF
we used histograms constructed with the PO method and the estimation was carried out
by procedure Estimate-Cardinality-With-AvgLengthFix. For MP we used histograms
generated with the MBRC method and related estimations using (2-2) and (2-3).

In the first four lines in Table 3.4, for two datasets with line objects, the maximum
error for IHWAF is 31.0% in the 𝐽16 query, compared to 404.8% for the MP method. For
two datasets with polygon objects (the next four lines), the maximum error is for query 𝐽19,
where the IHWAF method underestimates the cardinality. This underestimation occurs
due to the characteristic of the two datasets used, crops and hydrography, two events that
have an inherent proximity due to the frequent usage of fertile soil at riversides. The
same underestimation occurs for 𝐽1, also for two commonly co-located events (rivers
and deforestation) and for 𝐽12, two datasets representing the same natural phenomenon
(hydrography and inland water), one using polygons and other using lines. As the method
assumes uniformity in each histogram cell, when the dataset data distribution diverges
from this assumption the estimate presents an error. In summary, the table shows that

3.6 Cost Model Evaluation 61

our proposed method (IHWAF) outperforms the baseline method (MP), showing more
consistent results with smaller errors (except for 𝐽1 and 𝐽12, all other datasets produced
a relative error of no more than 33.0%). The average error of IHWAF for all queries is
20.9%, with standard deviation 𝜎2 = 21.1%, while the average of MP is 379.4%, with
standard deviation 𝜎2 = 461.5%.

3.6.4 Evaluation of Join Selectivity per Histogram Cell
We also investigated the precision of the estimated cardinality for each resulting

histogram cell, 𝑔.cardinality , as computed by procedure Build-Intermed-Histogram in
Algorithm 3.3. The estimated cardinality of each cell is a key parameter when estimating
the load on a server in a distributed environment. Thus, it has a direct impact on the
definition of query balance. We captured the estimated cardinality for each histogram cell
in all join queries (𝐽1 to 𝐽20) and compared it with the real values obtained when running
the query over the dataset.

The results are shown in Table 3.5. As we have thousands of results for each
query, we computed the error 𝐸 for each of them and present statistical values about
the 𝐸 population. There are columns for the average, minimum, maximum, and standard
deviation (𝜎2), as well as the percentage of resulting histogram cells for which the error fits
in a particular range (the last four columns). The minimum error is always equals to zero as

Table 3.5: Statistics for Estimated Cardinality Results per His-
togram Cell for Join Queries.

Global statistics % of cells with error 𝐸
Query Min Max 𝝈𝟐 Average ≤ 𝟓 ≤ 𝟏𝟎 ≤ 𝟐𝟎 ≤ 𝟓𝟎
𝐽1 0 24 1.1 0.6 99.1 99.9 100.0 100.0
𝐽2 0 66 1.5 0.5 98.9 99.7 100.0 100.0
𝐽4 0 24 1.4 1.0 97.7 99.6 100.0 100.0
𝐽3 0 47 1.6 1.1 97.6 99.6 99.9 100.0
𝐽15 0 123 5.2 3.6 93.5 97.6 99.2 99.7
𝐽18 0 425 9.1 3.2 84.4 92.3 97.0 99.5
𝐽11 0 89 5.1 3.4 76.9 91.8 98.6 99.9
𝐽5 0 33 4.4 3.6 73.7 90.9 99.0 100.0
𝐽19 0 199 15.2 7.1 70.0 81.4 90.4 97.6
𝐽16 0 139 8.6 5.7 65.8 82.7 94.2 99.5
𝐽17 0 254 21.2 10.4 60.1 73.2 85.7 95.7
𝐽8 0 167 14.0 8.1 59.7 76.1 89.5 98.1
𝐽9 0 146 12.8 7.8 59.4 76.6 89.9 98.4
𝐽20 0 370 32.5 19.1 49.3 59.9 72.1 88.3
𝐽14 0 424 22.0 14.3 48.6 61.2 75.6 93.6
𝐽7 0 144 9.5 9.0 41.9 66.2 89.3 99.4
𝐽6 0 126 10.2 9.8 40.0 62.4 86.8 99.4
𝐽13 0 500 26.8 17.7 37.2 53.5 72.1 91.9
𝐽10 0 177 41.6 35.2 31.6 36.8 54.4 74.6
𝐽12 0 959 85.9 45.7 30.7 42.7 58.2 76.9

3.7 Final Considerations 62

the method correctly estimate the cardinality of a set of cells in each query. The first eight
queries in the table have the majority of cells correctly estimated with more than 90% of
the cells presenting an error less than or equal to ten objects. After that, the error increases
slowly until the end of the table. The values in Table 3.5 also permit us to make an in-depth
study of the estimates presented in the previous section. Query 𝐽12 exhibits consistent
behavior, i.e., it is the worst-estimated query in both experiments. A different behavior
occurs for query 𝐽1. While it is the second worst query in Table 3.4, here it is the best one,
with less than one percent of the histogram cells presenting an error ≥ 5. The reasoning
behind this is the small cardinality of the query, for which even a smaller number of wrong
estimates or a large number of smaller errors causes a substantial error when summing up
the values to obtain the query cardinality. A markedly different behavior occurs for query
𝐽10. Although it is not listed in the worst queries in the previous experiment (11.3% relative
error), here it is one of the two worst-estimated queries, together with 𝐽12. The case of 𝐽10
is related to the compensation that occurs when the estimation oscillates between high and
low, compared with the real cardinality for the cell.

3.7 Final Considerations
In this chapter, we introduced a model to estimate the cost of multiway spatial

join queries. Although it is designed for the estimation of multiway spatial join queries,
it can also estimate the selectivity of window and simple spatial join queries, as we have
shown during the evaluation of some of its features.

We presented improvements to overcome the errors caused by the MBR simpli-
fication of spatial objects and provided specific formulae to estimate join selectivity when
the two datasets have line objects or when the objects of one dataset are of a line type and
the objects of the other are of a polygon type. The experimental evaluation showed that
these new methods significantly improve a previous well-known cost model for spatial
queries, while dealing with complex spatial objects and real spatial datasets.

According to our evaluation, there are two main sources of error in the model:
(𝑎) natural co-located events and (𝑏) the divergence between the uniformity assumption in
the proposed formulae and the spatial data itself. For (𝑎), another metadata field indicating
the expected probability of intersection can be of help. However, there are two drawbacks
with this. Firstly, one needs to have prior knowledge about the dataset, and secondly, as
it is a particular hint about the join itself – not related to each dataset in particular –, we
need to know what datasets will be joined in the system8. For (𝑏), other metadata fields

8DBMSs for scalar data use per-query hints to improve cost estimation [11].

3.7 Final Considerations 63

to indicate the divergence from uniformity or even a complete redesign of the estimation
formulae may be necessary.

Other sources of error exist, such as the mis-handling of boundary effects by the
POmethod. For this case, improved histogram techniques should be employed. However, it
is necessary to adapt such techniques to perform data partitioning in distributed systems.
Two related techniques which we are aware of are the MinSkew histogram [1] and the
improved version of Euler Histograms proposed in [81]. We leave the implementation and
evaluation of these suggestions as future work.

The cost model presented here provides the parameters for the scheduling of
spatial join queries in distributed systems presented in Chapter 4. We complete the
evaluation of the proposed cost model in Chapter 6, presenting an overall evaluation of
estimates for multiway spatial join queries.

CHAPTER 4
Scheduling Multiway Spatial Joins Queries

In this chapter, we consider the problem of assigning jobs, defined by pairs of
data partitions from two datasets and aligned by a spatial predicate, to a set of servers or
machines in a distributed system. Together with the cost model presented in the previous
chapter, the defined assignment, or schedule, establishes the communication cost and the
load balance of execution plans for distributed multiway spatial join queries.

The scheduling of a query plan occurs in a critical stage inside the query opti-
mizer: the plan selection algorithm. In the previous chapter, we showed that a schedule
is generated for each step of a query and for a number of execution plans. The objective
is to compare the cost of plans and select the best one. This is illustrated in the call to
Schedule-Plan-Step inside the procedure Estimate-Plan-Cost (Algorithm 3.5). Since
the number of plans is exponential in the number of datasets, even with a pruned set of
plans, the time to select an execution plan needs to be considered from the perspective of
the total runtime of the query and the system throughput. For ad-hoc queries and focusing
better query runtime, the optimizer should take less time than the query execution time
itself using a non-optimal plan. Otherwise, we may just run the query directly without op-
timization. For repetitive queries or focusing better system throughput, this restriction is
relaxed as the query will be executed many times and we can amortize the cost of query
optimization.

We propose and evaluate a bi-objective linear integer model for this problem and
apply two combinatorial methods to solve it: the well-known Linear Relaxation and the
more sophisticated Lagrangian Relaxation [32]. To the best of our knowledge, the formal
definition of models and the application of these techniques have not been extensively
explored in the distributed database literature. We will present scenarios for which these
tools can be considered, observing the economy of computational resources due to the fact
that approximated solutions are very close to the optimum, in contrast to the difficulty of
solving the integer model using exact methods.

The problem studied here relates to the copy selection and sub-query allocation
problem described in the distributed database literature, that deals with the allocation
and copy of entire relations or fragments of horizontally partitioned relations [65]. Early

4.1 Linear Programming Background 65

solutions for this problem suggest the usage of exhaustive enumeration or heuristics to
cope with the NP-hard nature of the problem [90], and due to that, in general, solutions
assume a controlled number of disjoint relation fragments, and a small number of replicas.

We considered a generalization of this problem, for which even a single step of
a multiway query has a large number of data partitions to handle and the fragments (or
data partitions) are non-disjoint by nature, due to the intrinsics of spatial data. Also, due
to its time complexity, the predicate checking needs to be split into a number of servers
in a distributed system. This problem conforms to modern ways of processing data in
distributed systems, such as the MapReduce framework [24] and the Spark engine [92].
Besides the recent criticism of the general applicability of these frameworks (e.g., [71, 80])
due to the lack of attention to the existing distributed database literature, here we attempt
to contribute to reducing this gap, presenting methods that consider both the optimization
of queries and more flexible ways of data partitioning. This approach has been identified
as a future research direction in the literature [26].

Throughout the text, we assume a previous understanding of Linear Programming
(LP) and some properties of LP models. We try to achieve a balance between formalism
and application and present a brief introduction to Linear Programming and Lagrangian
Relaxation in Sections 4.1 and 4.2, respectively. For a more comprehensive introduction,
we refer the reader to a helpful introductory textbook on this subject [5] and a more
advanced one in approximation algorithms [85, Chapter 12].

The remainder of the chapter is organized as follows. In Section 4.3, we formalize
the problem of scheduling individual steps of a distributed multiway spatial join query
through a linear integer model. In Section 4.4 we describe related problems found in the
literature and discuss the complexity of solving the proposed integer model. Section 4.5
presents a simplified version of the model, which has a particular structure exploitable
by Linear Relaxation (Section 4.6) and Lagrangian Relaxation (Section 4.7). Next, in
Section 4.8, we introduce a heuristic to repair a partial schedule provided by Linear and
Lagrangian Relaxations. This heuristic can also be used as a greedy algorithm to compute
schedules for the simplified model (Section 4.9). After discussing the complexity of the
proposedmethods (Section 4.10), we present their evaluation in Section 4.11.We conclude
by showing the broader applicability of the methods (Section 4.12) as well as our final
considerations, conclusions, and future directions (Section 4.13).

4.1 Linear Programming Background
Linear Programming (LP) is a set of methods to deal with the minimization

or maximization of a linear objective function, subject to a set of constraints expressed
as linear inequalities. The objective function and the set of constraints, together, form a

4.1 Linear Programming Background 66

linear programming model. The problem of solving this model, i.e., finding a solution that
minimizes or maximizes the value of the objective function subject to the set of constraints,
is called a linear program [5].

A linear programming model may contain integral constraints on its variables,
i.e., they may be constrained to assume integer or Boolean values. When it has integral
constraints, the program is called a linear integer program, or simply, an Integer Program
(IP) [15]. Formally, a linear integer program is a combinatorial optimization problem that,
in the standard form is:

𝑍𝐼𝑃 = Min cx (4-1)
s.t. Ax = b, (4-2)

x ≥ 0 and integral. (4-3)

where c ∈ ℝ𝑛 is a row vector, b ∈ ℝ𝑚, A ∈ ℝ𝑚×𝑛, x is the vector of unknowns, (4-1)
is the objective function, (4-2) is the set of constraints, and the vector inequality in (4-3)
means that each component of x is nonnegative and integral. Variations of this problem,
such as Ax ≥ b, Ax ≤ b, or maximizing instead of minimizing, can be rewritten in this
standard form [5]. A number of solutions can exist such that (4-2) and (4-3) are satisfied.
They are called feasible solutions. A feasible solution that minimizes the value of (4-1) is
said to be optimal and we denote it as 𝑥∗ and as 𝑍∗

𝐼𝑃 its value.
Many NP-hard discrete optimization problems can be modeled as integer pro-

grams [85]. However, when dealing with NP-hard problems, the existing exact methods
to solve integer programs, such as branch-and-bound, cutting-plane, and others, do not ef-
ficiently solve large enough instances [87]. A commonly employed approach to cope with
this limitation is to relax the requirement of finding an optimal solution, and searching for
a “good enough” approximate solution [87].

Besides the intuitively appealing greedy heuristics, another method used to find
approximate solutions for an integer program is termed Linear Relaxation. Linear Relax-
ation consists of relaxing the integer constraints, i.e., removing the integrality constraints
on variables, and solving the resulting linear program [85]. When the integrality con-
straints are removed, the solution that results often has fractional variable values. Thus, to
determine a feasible integer solution to the original problem we need to repair the partial
solution, rounding the values of the fractional variables (LP-rounding), or using a heuris-
tic algorithm. Of course, repairing the partial solution will not always result in an optimal
or near-optimal solution. However, some integer programs may have a bounded number
of fractional variables in the relaxed solution and good approximations can be found with
this method. Another more sophisticated method in this matter is the Lagrangian Relax-
ation [32]. The next section gives a brief introduction to it.

4.2 Lagrangian Relaxation 67

4.2 Lagrangian Relaxation
Lagrangian Relaxation is a relaxation method to obtain an approximate problem

for an integer programwhen its constraints can be divided into two groups: a set of simpler
constraints, chosen in a way that the problem becomes relative “easy” to solve if it has only
these constraints, and a set of difficult constraints. To obtain the Lagrangian problem, we
dualize the set of difficult constraints, i.e., move it to the objective function, weighted by a
vector of Lagrangianmultipliers. The optimal solution to the Lagrangian problem provides
a lower (upper) bound to the original minimization (maximization) problem [32].

Consider the following integer program:

𝑍 = Min cx (4-4)
s.t. Ax = b, (4-5)

Dx ≤ e, (4-6)
x ≥ 0 and integral, (4-7)

where (4-6) is the set of easy constraints and (4-5) the set of difficult ones. Moving the
difficult constraints to the objective function 𝑍, weighted by a row vector of Lagrange
multipliers 𝜇 ∈ ℝ𝑚, leads to the following Lagrangian problem:

𝑍𝐷(𝜇) = Min cx + 𝜇(Ax − b) (4-8)
s.t. Dx ≤ e, (4-9)

x ≥ 0 and integral. (4-10)

This leaves us with the problem of finding a value for 𝜇 for which 𝑍𝐷(𝜇) is equal
to or nearly equal to 𝑍. A method used to determine 𝜇 is the Subgradient Optimization
Method, proposed byHeld andKarp [42]. Themethod starts with a vector of multipliers 𝜇0

and iteratively computes a sequence of {𝜇𝑘} using the rule in (4-11), where 𝑥𝑘 is an optimal
solution to 𝑍𝐷(𝜇𝑘) and 𝑡𝑘 is a positive scalar step size. Indeed, 𝑡𝑘 can be determined in
practice by using (4-12), where 𝜆𝑘 is a scalar satisfying 0 ≤ 𝜆𝑘 ≤ 2 and 𝑍𝑈 is an upper
bound on 𝑍.

𝜇𝑘+1 = 𝜇𝑘 + 𝑡𝑘(𝐴𝑥𝑘 − 𝑏) (4-11)

𝑡𝑘 = 𝜆𝑘(𝑍𝑈 − 𝑍𝐷(𝜇𝑘))
||𝐴𝑥𝑘 − 𝑏||2 (4-12)

The method runs for a specified arbitrary number of iterations. The sequence of
𝜆𝑘 is obtained by setting 𝜆0 = 2 on the first iteration and halving it whenever 𝑍𝐷(𝜇) fails
to increase in some arbitrary number of iterations. Additionally, setting 𝜇0 = 0 is a natural
choice, but for some problems, we can choose a 𝜇0 that accelerates the convergence, based

4.3 Problem Formulation 68

on the problem structure. The method does not guarantee that 𝜇 can be found such that
𝑍𝐷(𝜇) = 𝑍, i.e., such that the optimal solution for the Lagrangian problem is equal to
the optimal solution for the original problem. Furthermore, there is no way of proving
optimality unless a 𝜇𝑘 is obtained for which 𝑍𝐷(𝜇𝑘) equals the cost of a known feasible
solution [32].

It is possible to obtain feasible solutions to the original problem while solving
𝑍𝐷, however, the occurrence of them is rare [32]. Nonetheless, often a solution for 𝑍𝐷(𝜇)
is nearly feasible and can be made feasible by using a repairing heuristic that explores the
problem structure.

Besides the intrinsics of the method, Fisher [32] showed a list of NP-hard prob-
lems for which LR provided substantially improved solutions. The main advantages of LR
are the fast convergence to nearly optimal or optimal solutions, and its use as a replacement
for the Linear Relaxation in branch-and-bound algorithms [32].

A comprehensive introduction to Lagrangian Relaxation is given by Fisher [32],
including alternative methods to compute 𝜇.

4.3 Problem Formulation
In this section, we introduce a formal integer model of the problem of assigning

jobs to a set of servers or machines in a distributed system. Each job constitutes a pair of
data partitions that are aligned by a spatial predicate for a join between two spatial datasets.
To conform to the related literature, we will use the termmachine as a synonym of a server
in a distributed system.

We consider the arrays provided by procedure Estimate-Plan-Cost (Algo-
rithm 3.5), when it calls Schedule-Plan-Step. The call provides the estimated and
summed communication cost for each machine and partition, ̂𝑐 and ̄𝑐, as well as the pro-
cessing cost for each job 𝑤.

The communication cost of a job is defined based on the data transference that is
incurred when moving a data partition from the machine where it is currently located to
the machine where it is assigned to be processed. The data partition is copied only once
for each machine in which it is used and no communication cost incurs if it is processed
in a machine to which it has already been assigned.

The processing cost is defined based on the amount of processing time required
to finish a job. We assume that the processing cost of a job is the same on any machine.
We also consider a residual load for a machine, arising from a prior unbalanced query
execution or other particularity of a system. This residual load is useful when scheduling
multiway queries, to consider the unbalance of a prior step and get a better balance of the
entire query.

4.3 Problem Formulation 69

The main objective of the scheduling is to perform the job allocation in such a
way that the query load is evenly distributed among the machines and the communication
cost incurred is minimized. However, these are two conflicting objectives in the sense that
to achieve a better balance in the query execution we incur in extra costs to transfer data
partitions to idle machines. To this end, we introduce a parameter termed 𝑓 , to specify the
desired emphasis on a balanced schedule or on a low usage of network capacity.

Let 𝐴 and 𝐵 represent the set of cells in the two histograms used in a step of
a multiway spatial join query plan. Let 𝑝 = |𝐴| and 𝑞 = |𝐵|, and 𝑚 be the number of
machines, 𝑚 ≤ min(𝑝, 𝑞). The set of jobs 𝐽 to be processed is composed of pairs {𝑎, 𝑏},
where 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, 𝐽 ⊆ 𝐴 × 𝐵, and 𝑛 = |𝐽|. Each job 𝑗 ∈ 𝐽 has an associated weight,
𝑤𝑗 ∈ ℤ+, that specifies its processing cost. Each 𝑎 and 𝑏 has an associated cost, ̂𝑐𝑖𝑎 ∈ ℤ+

and ̄𝑐𝑖𝑏 ∈ ℤ+, respectively, which specifies the incurred communication cost when it is
processed on machine 𝑖, 1 ≤ 𝑖 ≤ 𝑚. Each machine has a residual load 𝑢𝑖 given in the same
units as the processing costs, which represents a previous existing load that reduces its
capacity.

There are three sets of binary decision variables:

• ̂𝑦𝑖𝑎 = 1, if 𝑎 is processed on machine 𝑖, or ̂𝑦𝑖𝑎 = 0, otherwise, ∀ 𝑎 ∈ 𝐴, 𝑖 = 1, … , 𝑚;
• ̄𝑦𝑖𝑏 = 1, if 𝑏 is processed on machine 𝑖, or ̄𝑦𝑖𝑏 = 0, otherwise, ∀ 𝑏 ∈ 𝐵, 𝑖 = 1, … , 𝑚;
• 𝑥𝑖𝑗 = 1, if the job 𝑗 is processed on machine 𝑖, or 𝑥𝑖𝑗 = 0, otherwise, ∀ 𝑗 ∈ 𝐽 ,

𝑖 = 1, … , 𝑚.

Additionally, let 𝑥0 be a decision variable that represents the completion time of
the latest processed job by any machine, i.e., the makespan. The IP program, denoted by
FM for short, to determine the best schedule to process a step of a multiway spatial join
query which minimizes the sum of the weighted makespan and the total communication
cost is given in (FM.1) – (FM.6).

𝑍𝐹 𝑀 = Min 𝑓𝑥0 +
𝑚

∑
𝑖=1 (

𝑝

∑
𝑎=1

̂𝑐𝑖𝑎 ̂𝑦𝑖𝑎 +
𝑞

∑
𝑏=1

̄𝑐𝑖𝑏 ̄𝑦𝑖𝑏)
, (FM.1)

𝑠.𝑡.
𝑚

∑
𝑖=1

𝑥𝑖𝑗 = 1, ∀ 𝑗 ∈ 𝐽 (FM.2)

∑
𝑗∈𝐽

𝑤𝑗𝑥𝑖𝑗 + 𝑢𝑖 ≤ 𝑥0, 𝑖 = 1, … , 𝑚 (FM.3)

𝑥𝑖𝑗 − ̂𝑦𝑖𝑎 ≤ 0, ∀ 𝑗 = {𝑎, 𝑏} ∈ 𝐽, 𝑖 = 1, … , 𝑚 (FM.4)
𝑥𝑖𝑗 − ̄𝑦𝑖𝑏 ≤ 0, ∀ 𝑗 = {𝑎, 𝑏} ∈ 𝐽, 𝑖 = 1, … , 𝑚 (FM.5)
𝑥𝑖𝑗 , ̂𝑦𝑖𝑎, ̄𝑦𝑖𝑏 ∈ {0, 1}. ∀ 𝑗 = {𝑎, 𝑏} ∈ 𝐽, 𝑖 = 1, … , 𝑚 (FM.6)

4.4 Related Problems 70

Function (FM.1) represents the objective of minimizing the makespan and the
sum of the communication costs. Constraint family (FM.2) expresses the requirement
that each job must be processed on exactly one machine. Constraint family (FM.3) is a
set of logical inequalities arising from the need to minimize the makespan. Constraint
families (FM.4) and (FM.5) are a set of logical inequalities to indicate whether or not each
particular cell is processed by a particular machine. Constraint family (FM.6) represents
the usual integrality constraints, indicating if a job is or is not processed by a particular
machine (𝑥𝑖𝑗), and if a data partition is or is not used by a machine (̂𝑦𝑖𝑎, ̄𝑦𝑖𝑏).

Following the standard nomenclature and classification of the scheduling theory
and the three-field notation introduced by Lawler et al. [51], this problem is an extension
of the unrelated1 parallel machines scheduling problem with costs. To compare the FM
model with the existing literature, let us briefly introduce a well-studied model called
𝑅||𝐶𝑚𝑎𝑥.

𝑅||𝐶𝑚𝑎𝑥 is the problem inwhich 𝑛 jobs are to be assigned to 𝑚 unrelatedmachines
without preemption, each job being assigned to exactly one machine. Job 𝑗 (𝑗 = 1, … , 𝑛)
becomes available for processing at time zero and requires a processing time 𝑝𝑖𝑗 if assigned
to machine 𝑖 (𝑖 = 1, … , 𝑚). The objective is to schedule the jobs so that the makespan,
𝐶𝑚𝑎𝑥, which is the completion time of the latest finished job, is minimized. Garey and
Johnson [35] showed that 𝑅||𝐶𝑚𝑎𝑥 is NP-hard in the strong sense, even for the special
case of identical processors, 𝑃 ||𝐶𝑚𝑎𝑥, where the processing time of each job does not
depend on the processor to which it is assigned (𝑝𝑖𝑗 = 𝑝𝑗).

Thus, the existence of a polynomial time algorithm to solve FM is remote, unless
P=NP. Naturally, we want to know how fast and how well the optimum for FM can be
approximated. In the next section, we expand the comparison of FM, highlighting its
differences to related problems and discussing approximation algorithms proposed for
similar problems.

4.4 Related Problems
As presented in the previous section, FM is an extension of 𝑅||𝐶𝑚𝑎𝑥 also referred

to asUnrelated Parallel Machine Scheduling (UPMS) problem, which is a knownNP-hard
problem [85] when 𝑚 ≥ 2. Lenstra et al. [52] proposed a 2−approximation algorithm for
UPMS, and also showed that there is no approximation better than a 3⁄2-approximation
unless P=NP. Shchepin and Vakhania [76] presented an LP-rounding procedure with a
worst case performance ratio of 2−1⁄m and proved that it is the best approximation ratio that
can be achieved using the rounding approach. FM differs from the UPMS problem as it

1Unrelated is used as defined by [51]. It means that we have individual costs for each job-machine pair,
represented by ̂𝑐𝑖𝑎 and ̄𝑐𝑖𝑏 in the model.

4.5 Simplified Model 71

considers theminimization of costs in the objective function as well as themakespan. Also,
a set of additional restrictions was added to compute the total cost, (FM.4) and (FM.5).

Unrelated Parallel Machine Scheduling with Costs (UPMS-C) is a more similar
problem to FM, proposed by Shmoys and Tardos [78], which considers both the makespan
and an additional cost to process a job. The formal description is: find a schedule that
minimizes the total cost and the makespan, given a set 𝐽 of jobs, a set 𝑀 of machines,
the time 𝑤𝑖𝑗 to process job 𝑗 ∈ 𝐽 on machine 𝑖 ∈ 𝑀 , a cost 𝑐𝑖𝑗 to process the job
𝑗 ∈ 𝐽 on machine 𝑖, and a maximum limit of time 𝑇𝑖 to use machine 𝑖. They presented
an approximation algorithm that given 𝐶 and 𝑇 constants finds a schedule with cost at
most 𝐶 and makespan at most 2𝑇 , if such a schedule with cost 𝐶 and makespan 𝑇 exists.
Angel et al. [4] proposed a Fully Polynomial Time Approximation Scheme (FPTAS) for
UPMS-C. They focus on the case where the number of machines is a fixed constant, i.e.,
not part of the input. The FPTAS finds a schedule for any 𝜖 > 0 with a makespan at most
(1+𝜖)𝑇 and cost at most 𝐶𝑜𝑝𝑡(𝑇), in time 𝑂(𝑛(𝑛/𝜖)𝑚), given that a schedule of makespan 𝑇
exists. Despite the similarity in the objective of FM and UPMS-C, they are still different.
Again, FM presents additional constraints that are needed to compute the total costs, using
each data partition that composes a job.

Vazirani [85] discusses an interesting property of a Linear Relaxation for the
UPMS model. Given the number 𝑛 of jobs and the number of machines 𝑚, any extreme
point solution assigns at least 𝑛 − 𝑚 jobs integrally to a machine. The remaining 𝑚 jobs
can be set fractionally. Thus, when 𝑚 is small, only a limited number of jobs needs to be
reallocated in the partial solution and a repairing procedure applied to it can generate a
good feasible solution for some instances. However, in the general case, this procedure
provides only a 2-approximation algorithm, as it is possible to provide tight instances for
which it does not perform well [85]. Furthermore, the number of constraints in FM is
greater than in UPMS. UPMS has 𝑛 + 𝑚 constraints while FM has 2𝑚𝑛 + 𝑛 + 𝑚, arising
from the additional constraints to compute the cost. Compared to the number 𝑛 of jobs,
the number of constraints in FM is higher, and thus, Linear Relaxation for FM does not
perform as well as for UPMS.

The absence of an approximation algorithm with a good performance ratio for
these similar problems tells us about the difficulty to solve FM. To discover some structure
in the problem that can be successfully explored by LP and LR relaxations, we present a
simplified version of FM in the next section.

4.5 Simplified Model
The main complicating constraints in FM, when compared to related problems,

are (FM.4) and (FM.5), which provide a means to compute the total cost. A possible

4.5 Simplified Model 72

simplification to FM is to ignore the fact that a data partition should not be redundantly
transferred in the network, assuming that it is copied every time it is used in a machine.
Thus, instead of a per partition cost, we define a per job cost 𝑐𝑖𝑗 , summing up the costs of
partitions 𝑎 and 𝑏 for a job 𝑗 = {𝑎, 𝑏}:

𝑐𝑖𝑗 = ̂𝑐𝑖𝑎 + ̄𝑐𝑖𝑏. (4-13)

This simplification removes the need for additional variables and constraints to
compute the communication cost and leads to a relatively easier model to solve. The new
simplified model SM, obtained from FM by applying this modification, is:

𝑍𝑆𝑀 = Min 𝑓𝑥0 +
𝑚

∑
𝑖=1

𝑛

∑
𝑗=1

𝑐𝑖𝑗𝑥𝑖𝑗 , (SM.1)

s.t.
𝑚

∑
𝑖=1

𝑥𝑖𝑗 = 1, 𝑗 = 1, … , 𝑛 (SM.2)
𝑛

∑
𝑗=1

𝑤𝑗𝑥𝑖𝑗 + 𝑢𝑖 ≤ 𝑥0, 𝑖 = 1, … , 𝑚 (SM.3)

𝑥𝑖𝑗 ∈ {0, 1}. 𝑗 = 1, … , 𝑛; 𝑖 = 1, … , 𝑚 (SM.4)

SM preserves the properties of extreme point solutions for UPMS about the
number of constraints, variables, and fractionally set jobs that are useful for a Linear
Relaxation when 𝑚 is small. We also show in Section 4.7 that this simplified problem
presents an important structure for LR-relaxation. Furthermore, a feasible solution 𝑥 to
SM is feasible for FM as well, because: 𝑖) FM and SM share the same set 𝑥 of variables,
𝑖𝑖) none of the FM constraints are violated by 𝑥, and 𝑖𝑖𝑖) it is possible to determine the
additional variables ̂𝑦 and ̄𝑦 from 𝑥. We can obtain upper bounds for either 𝑍𝑆𝑀 and
𝑍𝐹 𝑀 by substituting 𝑥 in (SM.1) and (FM.1), respectively.

One drawback of this modification is that the resulting schedule may result in a
lack of opportunities to reduce the overall communication cost due to the concentration
of jobs involving the same partition on a given machine, to the detriment of improving
the makespan. Informally, suppose an instance with three distinct jobs formed by a data
partition with the same cost 𝑐 for all machines (ignore for a moment the other side of the
pair that composes the job). The cost of processing this instance in one or two machines
is the same, 3𝑐, as SM assumes that it is transferred three times. Thus, as it will not incur
an extra cost, SM can divide the load between the two machines to reduce the makespan.

Formally, the following describes a family of instances with this behavior. Let 𝑝
partitions of 𝐴 and 𝑞 partitions of 𝐵 compose 𝑛 jobs {𝑎, 𝑏} = 𝐴 × 𝐵, implying 𝑛 = 𝑝𝑞.
For the sake of simplicity, assume 𝑛 = 𝑚 and 𝑓 = 1. Let the communication cost be the

4.6 Linear Programming Relaxation for SM 73

same for all partitions and machines (̂𝑐𝑖𝑎 = ̄𝑐𝑖𝑏 = 𝜅𝑚, for all 𝑎 = 1, … , 𝑝, 𝑏 = 1, … , 𝑞, and
𝑖 = 1, … , 𝑚), and the processing costs 𝑤𝑗 = 𝜅 for all 𝑗 ∈ 𝐽 . An optimal solution for SM
will assign one job to each machine, with 𝑥0 = 𝜅 and communication cost 2𝜅𝑚𝑛 = 2𝜅𝑚2,
resulting in 𝑍𝑆𝑀 = 𝜅 + 2𝜅𝑚2 and 𝑍∗

𝑆𝑀 = 𝑍𝐹 𝑀 since all partitions are copied to all
machines. An optimal solution for FM, in turn, will assign all jobs to only one machine,
with 𝑥0 = 𝜅𝑚, communication cost 𝜅𝑚𝑝𝑞 = 𝜅𝑚𝑛, and 𝑍∗

𝐹 𝑀 = 𝜅𝑚 + 𝜅𝑚2. Comparing
𝑍𝐹 𝑀 with 𝑍∗

𝐹 𝑀 , the former provided by SM and the later provided as the optimum for
FM, we have:

𝜅 + 2𝜅𝑚2 = 𝜅𝑚(1/𝑚 + 2𝑚) > 𝜅𝑚(1 + 𝑚) = 𝜅𝑚 + 𝜅𝑚2.

Notwithstanding, in the instances of spatial join queries with data partitions
generated from spatial histograms cells, the re-use of data partitions in jobs is expected to
be low because after all, the purpose of the histogram grid is to generate disjoint partitions
that reduce the number of predicate checks. Thus, a solution to SM for these instances
should provide a reasonable value for 𝑍𝐹 𝑀 . We study this behavior in the evaluation
section.

4.6 Linear Programming Relaxation for SM
The Linear Relaxation for SM consists of removing the integrality constraints and

letting 𝑥𝑖𝑗 assume fractional values in the solution. Besides (SM.4) also provides an upper
limit, 𝑥𝑖𝑗 ≤ 1, the same bound is also imposed by constraint family (SM.2).

The optimal solution for the Linear Relaxation can be computed by a LP method,
such as the well-known Simplex algorithm [5]. The solution, however, will be infeasible
for SM if it has fractionally set jobs, i.e., jobs partially scheduled on two or more machines.
In this case, we use a repairing heuristic to fix their scheduling. We denote this procedure
as LP in the following.

Both LP and the method resulting from the Lagrangian relaxation use the same
repairing procedure (Repair-Partial-Solution), and we introduce it in Section 4.8.

4.7 Lagrangian Relaxation for SM
Recall from Section 4.2 that to make a Lagrangian relaxation for an IP we must

split its constraints into two sets: a set of difficult constraints that will be dualized in
the objective function, and another set of easier constraints, such that solving the IP with
these later constraints is relatively easier compared to the original IP. For SM, a possible
Lagrangian relaxation (LR) is obtained by dualizing constraints (SM.2) into the objective
function using Lagrangian multipliers 𝜇𝑗 , ∀ 𝑗 ∈ 𝐽 . The resulting model is given in (LR.1).

4.7 Lagrangian Relaxation for SM 74

𝑍𝐿𝑅(𝜇) = Min 𝑓𝑥0 + ∑
𝑗∈𝐽

𝑚

∑
𝑖=1

𝑐𝑖𝑗𝑥𝑖𝑗 + ∑
𝑗∈𝐽

𝜇𝑗 (

𝑚

∑
𝑖=1

𝑥𝑖𝑗 − 1
)

,

= Min 𝑓𝑥0 + ∑
𝑗∈𝐽

𝑚

∑
𝑖=1

(𝑐𝑖𝑗 + 𝜇𝑗) 𝑥𝑖𝑗 − ∑
𝑗∈𝐽

𝜇𝑗 , (LR.1)

s.t. (SM.3) and (SM.4).

An important property of LR is that it reduces to 𝑚 0-1 Knapsack Problems, one
for each constraint in the family (SM.3). In the following we introduce a 0-1 Knapsack
model and show how to use it to compute solutions to 𝑍𝐿𝑅(𝜇).

A 0-1 Knapsack is a problem of choosing a subset of ̂𝑛 items, each with a profit
𝑝𝑗 and weight �̂�𝑗 , 𝑗 = 1, … , ̂𝑛, such that the profit sum of the selected items is maximized
and the sum of weights does not exceed the capacity 𝑣 [85]. A 0-1 Knapsack model is
given in (K.1)–(K.3) for reference. (K.1) is the objective function, (K.2) is a constraint
family to restrict the selected items not to exceed a given knapsack capacity 𝑣, and (K.3)
defines the integrality constraints for 𝑥𝑗 to indicate the selected items:

𝑍𝐾 = Max
̂𝑛

∑
𝑗=1

𝑝𝑗𝑥𝑗 , (K.1)

s.t.
̂𝑛

∑
𝑗=1

�̂�𝑗𝑥𝑗 ≤ 𝑣, (K.2)

𝑥𝑗 ∈ {0, 1}, 𝑗 = 1, … , 𝑛. (K.3)

The 𝑚 0-1 Knapsack Problems for LR are obtained in the following way: Let
𝐾𝐿𝑅(𝑖, 𝜇), 𝑖 = 1, … , 𝑚 be the 𝑖-Knapsack problem for LR. The number of items to select
from is ̂𝑛 = 𝑛, one item for each 𝑗 ∈ 𝐽 . The weights �̂� for each problem are obtained
from 𝑤 values, and profits 𝑝 from 𝑐 and 𝜇. A lower bound for 𝑣 can be determined by
∑𝑗∈𝐽 𝑤𝑗 /𝑚 ≤ 𝑥0. The complete model for a 𝐾𝐿𝑅(𝑖, 𝜇) is defined by (KLR.1) to (KLR.3).
The inversion of the signal for the sum of profits in (KLR.1) is due to Knapsack being a
maximization problem, while SM is a minimization problem.

𝑍𝐾𝐿𝑅(𝑖, 𝜇) = Max −
𝑛

∑
𝑗=1

(𝑐𝑖𝑗 + 𝜇𝑗) 𝑥𝑖𝑗 , (KLR.1)

s.t.
𝑛

∑
𝑗=1

𝑤𝑗𝑥𝑖𝑗 ≤ 𝑣 − 𝑢𝑖, (KLR.2)

𝑥𝑖𝑗 ∈ {0, 1}, 𝑗 = 1, … , 𝑛. (KLR.3)

4.7 Lagrangian Relaxation for SM 75

Finally, we present a procedure to compute 𝜇 and how to obtain feasible solutions
to SM, based on the iterative Subgradient Optimization Method. Algorithm 4.1 shows the
steps of the method in pseudocode. After setting initial values in lines 1 and 2, we compute
and set the initial upper bound on 𝑍𝑆𝑀 (line 3), by calling a greedy algorithm that is
presented next. The value of 𝑣 (line 4) is set by using a best-fit heuristic that provides
an upper bound by ordering the jobs by decreasing the makespan and allocating them to
the least-used machine. The lower bound for 𝑣 is set in line 5. In lines 7 and 8 the method
iteratively solves the 𝑚 𝐾𝐿𝑅 knapsack problems. Next, in line 9, the vector of subgradients
𝜎 is computed. If the value of 𝑍𝐿𝑅(𝜇𝑘) increases above the upper bound limit 𝑍𝑈 , we
reduce the value of 𝑣 by an arbitrary small percentage (line 10) and return to line 7. Line 11
calls the procedure Repair-Partial-Solution, given next, to repair the partial solution 𝑥,
transforming it into a feasible solution to SM. Next, based on a possibly improved upper
bound 𝑍𝑈 (line 12), a new 𝑡𝑘 and 𝜇𝑘+1 for the next iteration are computed (lines 13 and
14). Line 15 updates 𝜆 if a better 𝑍𝐿𝑅 is not found in 𝜆𝑖 iterations. The method stops and
returns the best feasible solution found (�̂�) if the condition in line 16 is satisfied at any
iteration or if the last iteration 𝑡 is reached. We refer to this procedure as the LR method.

Algorithm 4.1: Procedure Solve-LR-Relaxation to compute a feasible solution
to SM through LR-relaxation.
Solve-LR-Relaxation(𝑐, 𝑤, 𝑆)
1 𝜇0 = 0
2 𝜆 = 2
3 𝑍𝑈 is set with an upper bound on 𝑍𝑆𝑀
4 𝑣 = best-fit UB for 𝑥0
5 𝑣𝑙𝑏 = ∑𝑗∈𝐽 𝑤𝑗 /𝑚
6 for 𝑘 = 0 to 𝑡
7 for 𝑖 = 1 to 𝑚
8 Solve 𝐾𝐿𝑅(𝑖, 𝜇𝑘) and partially set 𝑥, for 𝑖

9 𝜎𝑗 =
𝑚

∑
𝑖=1

𝑥𝑖𝑗 − 1, ∀𝑗 ∈ 𝐽

10 reduce 𝑣 and goto 7 if (𝑣 > 𝑣𝑙𝑏 and 𝑍𝐿𝑅(𝜇𝑘) > 𝑍𝑈)
11 �̂� = Repair-Partial-Solution(𝑥)
12 𝑍𝑈 = 𝑍 �̂� if 𝑍𝑈 > 𝑍 �̂�

13 𝑡𝑘 =
𝜆 (𝑍𝑈 − 𝑍𝐿𝑅(𝜇𝑘))

‖𝜎‖2

14 𝜇𝑘+1 = 𝜇𝑘 + 𝜎𝑡𝑘
15 𝜆 = 𝜆/2 if a better 𝑍𝐿𝑅 is not found in 𝜆𝑖 iterations.
16 stop if 𝑡𝑘 < 1 × 10−4 and 𝜆 < 1 × 10−4

17 return best �̂�

4.8 Repairing Heuristic 76

4.8 Repairing Heuristic
This section introduces a heuristic to repair a partial schedule provided by the LP

or LR relaxations, transforming it into a feasible solution for both SM and FM. Let 𝑥 be
the partial solution provided by the LP or LR method, and let us partition the jobs into
three sets defined by:

𝑆1 =
{

𝑗 ∈ 𝐽 ∣
𝑚

∑
𝑖=1

𝑥𝑖𝑗 = 0
}

,

𝑆2 =
{

𝑗 ∈ 𝐽 ∣
𝑚

∑
𝑖=1

𝑥𝑖𝑗 = 1
}

,

𝑆3 =
{

𝑗 ∈ 𝐽 ∣
𝑚

∑
𝑖=1

𝑥𝑖𝑗 > 1
}

,

where 𝑆1 is the set of unassigned jobs, 𝑆2 is the set of jobs that are correctly assigned, and
𝑆3 is the set of jobs that were multiply assigned. All 𝑗 ∈ 𝑆1 ∪ 𝑆3 need to be repaired to
transform 𝑥 into a feasible solution.

Furthermore, let us introduce the concept of regret for a job. The regret 𝑟𝑗 for a
job 𝑗 is defined based on the difference between the maximum and the minimum cost that
may be incurred if the job was scheduled in the worst or the best possible machine, plus
its load 𝑤𝑗 weighted by 𝑓 . Formally, 𝑟𝑗 is defined by (4-14). We use this concept to sort
the assignment of jobs, in a way that jobs that have a large load (𝑓𝑤𝑗) or a large regret are
scheduled first.

𝑟𝑗 = 𝑓𝑤𝑗 + (max𝑚
𝑖=1𝑐𝑖𝑗 − min𝑚

𝑖=1𝑐𝑖𝑗) (4-14)

We repair 𝑥 using the procedureRepair-Partial-Solution in Algorithm 4.2. Let
�̂� be the feasible solution under construction. The procedure starts by setting the residual
load of previous steps 𝑢 (line 1 and 2). Next it computes the number of machines for
which each 𝑗 ∈ 𝐽 is allocated (𝑡) and uses it to build the sets 𝑆1 and 𝑆3 (lines 4 to 6). If 𝑗
is correctly set (𝑡 = 1), �̂� is set accordingly (line 9), and its load 𝑤𝑗 is added to the array
of loads for each machine 𝑖 (line 10). The remaining jobs 𝑗 ∈ 𝑆1 ∪ 𝑆3, denoted as 𝑆𝑢,
are assigned to machines by the procedure Schedule-Unassigned-Jobs (line 11). After
this call, �̂� has a feasible solution for SM. This solution is further improved by procedure
Improve-Repaired-Solution (line 12). Next, we describe these two auxiliary procedures.

Procedure Schedule-Unassigned-Jobs, in Algorithm 4.3, starts by sorting the
jobs in 𝑆𝑢 by decreasing order of 𝑟𝑗 (line 1). Next, for each item 𝑗 ∈ 𝑆𝑢, the procedure
finds the machine 𝑠 for which the assignment of 𝑗 least increases the cost (lines 2 to 10),
assigns 𝑗 to it (line 11), and updates the load on machine 𝑠 (line 12) for the next iteration.
The procedure stops when all jobs are assigned to machines. For the sake of simplicity, we

4.8 Repairing Heuristic 77

Algorithm 4.2: Procedure Repair-Partial-Solution to repair a partial solution
𝑥 to SM.
Repair-Partial-Solution(𝑥, 𝑤, 𝑐, 𝑢, 𝑓)
1 for 𝑖 = 1 to 𝑚
2 load [𝑖] = 𝑢[𝑖]
3 for 𝑗 ∈ 𝐽
4 𝑡 = ∑𝑚

𝑖=1 𝑥𝑖𝑗
5 𝑆1 = 𝑆1 ∪ {𝑗} if 𝑡 = 0
6 𝑆3 = 𝑆3 ∪ {𝑗} if 𝑡 > 1
7 if 𝑡 = 1
8 Let 𝑖 be the machine where 𝑗 is allocated
9 �̂�𝑖𝑗 = 1

10 load [𝑖] = load [𝑖] + 𝑤𝑗
11 Schedule-Unassigned-Jobs(load , 𝑆1 ∪ 𝑆3, �̂�, 𝑤, 𝑐, 𝑓)
12 Improve-Repaired-Solution(load , �̂�, 𝑤, 𝑐, 𝑓)
13 return �̂�

Algorithm 4.3: Procedure Schedule-Unassigned-Jobs to schedule unassigned
jobs in 𝑆𝑢.
Schedule-Unassigned-Jobs(load , 𝑆𝑢, �̂�, 𝑤, 𝑐, 𝑓)
1 Sort 𝑆𝑢 by decreasing 𝑟𝑗
2 for 𝑗 ∈ 𝑆𝑢
3 lowcost = ∞
4 for 𝑖 = 1 to 𝑚
5 zinc = 𝑐𝑖𝑗
6 mkspaninc = 𝑤𝑗 − (𝑥0 − load [𝑖])
7 zinc = zinc + 𝑓 ∗ mkspaninc if mkspaninc > 0
8 if zinc < lowcost
9 lowcost = zinc

10 𝑠 = 𝑖
11 �̂�𝑠𝑗 = 1
12 load [𝑠] = load [𝑠] + 𝑤𝑗

use 𝑥0 to represent the makespan. In this context, it can be obtained from the maximum
value of the load array after line 1 and updated after line 12 if load [𝑠] surpasses the stored
𝑥0 value.

After the scheduling of the jobs in 𝑆𝑢, we further search for jobs for which a
machine exchange is worthwhile. Let 𝑥𝑖

0 be the machine with the largest load, 𝑥1 be the
second largest load for all machines, and 𝑝𝑗 be the index of themachinewhere 𝑗 is assigned.
Procedure Improve-Repaired-Solution, in Algorithm 4.4, searches for a new machine 𝑠
where to schedule 𝑗, 𝑗 ∈ 𝐽 , such that the processing and communication costs reduce the

4.9 A Greedy Algorithm for SM 78

most (lines 1 to 12). If there exists such machine 𝑠 (line 13), 𝑗 is moved from 𝑝𝑗 to 𝑠 (lines
14 and 15) and the load for machines 𝑠 and 𝑝𝑗 are updated accordingly (lines 16 and 17).
Note that the value of zinc (line 9) is positive if moving 𝑗 from 𝑝𝑗 to 𝑖 does not improve
the solution, and negative otherwise.

Algorithm 4.4: Procedure Improve-Repaired-Solution to improve the feasible
solution �̂�.
Improve-Repaired-Solution(load , �̂�, 𝑤, 𝑐, 𝑓)
1 for 𝑗 ∈ 𝐽
2 𝑠 = −1
3 lowcost = ∞
4 for 𝑖 = 1 to 𝑚, 𝑖 ≠ 𝑝𝑗
5 newx0 = 𝑥0
6 if 𝑠 = 𝑥𝑖

0
7 newx0 = newx0 − min(𝑥0 − 𝑥1, 𝑤𝑗)
8 newx0 = max (newx0 , load [𝑖] + 𝑤𝑗)
9 zinc = 𝑓 ∗ (newx0 − 𝑥0) + (𝑐𝑖𝑗 − 𝑐𝑝𝑗𝑗)

10 if zinc < lowcost
11 lowcost = zinc
12 𝑠 = 𝑖
13 if 𝑠 ≠ −1
14 �̂�𝑠𝑗 = 1
15 �̂�𝑝𝑗𝑗 = 0
16 load [𝑠] = load [𝑠] + 𝑤𝑗
17 load [𝑝𝑗] = load [𝑝𝑗] − 𝑤𝑗

4.9 A Greedy Algorithm for SM
Besides being used to repair a partial solution to SM, the procedure Schedule-

Unassigned-Jobs (followed by Improve-Repaired-Solution) can also be used to make
a complete schedule, starting with no scheduled jobs in �̂�, 𝑆𝑢 = 𝐽 , and an empty load

array.
There are two purposes in using it this way: 𝑖) to compare the performance of the

combinatorial methods (LP and LR) with the performance of an intuitively appealing but
simple method, and 𝑖𝑖) to use it when the limit of time imposed on the query optimization
is critical, for example, for queries with small runtime.

We refer to this way of using these procedures as the GR method since it
constitutes a greedy heuristic to provide solutions to SM.

4.10 Complexity of the Algorithms 79

4.10 Complexity of the Algorithms
We have proposed three distinct methods to provide feasible solutions to SM: a

greedy algorithm GR, the method based on the Linear Relaxation (LP), and the method
based on the Lagrangian Relaxation (LR). In this section, we discuss the time complexity
of these methods.

Let 𝑠 = |𝑆𝑢|, 0 ≤ 𝑠 ≤ 𝑛. The initial ordering of 𝑆𝑢 in Schedule-Unassigned-
Jobs takes 𝒪(𝑠 𝑙𝑔 𝑠). The loop that follows (lines 2 to 13) iterates over 𝑠 jobs and 𝑚
machines for each of them, 𝛩(𝑠𝑚). Thus, the time complexity of Schedule-Unassigned-
Jobs is 𝛩(𝑠𝑚) + 𝒪(𝑠 𝑙𝑔 𝑠). The time complexity of Improve-Fixed-Solution is 𝛩(𝑛𝑚)
as it iterates over all jobs and all machines. Observing that 𝑆𝑢 = 𝐽 and 𝑠 = 𝑛, the time
complexity of GR is the sum of these two auxiliary procedures, 𝒪(𝑛 𝑙𝑔 𝑛) + 𝛩(𝑛𝑚).

The time complexity of the LP method can be determined based on the com-
plexity of the Simplex method executed to identify a partial solution plus the time needed
to repair the partial solution, and the complexity of Repair-Partial-Solution. Repair-
Partial-Solution has an additional time complexity of 𝛩(𝑛𝑚) to compute the load and
identify the set of unscheduled jobs. Repecting the limit on the number of jobs to repair
in LP, 𝑠 ≤ 𝑚, and adding the complexity of the two auxiliary procedures results in a time
complexity of 𝒪(𝑚 𝑙𝑔 𝑚) + 𝛩(𝑛𝑚). The time complexity of the LP method, however,
will be dominated by the call to the Simplex algorithm that for practical purposes can be
taken as polynomial in the number of constraints and variables [41]. Recalling that SM
has 𝑛 + 𝑚 constraints and 𝑛𝑚 + 1 variables, the time complexity of the LP method is thus:
𝒪(𝑛 + 𝑚 + 𝑛𝑚).

LRmethod is themost complex of the three algorithms studied, with a complexity
determined by the solution of 𝑚 0-1 Knapsack problems in each iteration 𝑡, plus the call
to Repair-Partial-Solution and the calculation of the Lagrangian multipliers. We also
need an initial 𝑍𝑈 , that can be obtained using GR or LP. Updating Lagrangian multipliers
takes 𝛩(𝑛𝑚) time. A 0-1 Knapsack Problem can be solved in pseudo-polynomial time [72],
which means that its time complexity depends on the parameters given as input (e.g., 𝑣).
The number of knapsack problems solved will dominate the time complexity. Although
we can solve 𝒪(𝑡𝑚) problems for a tricky instance, 𝑡 being the number of iterations, we
expect a small 𝑡 for a typical instance, as the method converges relatively fast.

4.11 Evaluation
We evaluate the three proposed methods using the set of join queries presented

in Table 3.2 and a new set of multiway spatial join queries presented in Table 4.1. These
new queries provide instances with intermediate results. We refer to multiway queries in

4.11 Evaluation 80

the text as 𝑀𝑖.𝑗 , where 𝑖 is the query number and 𝑗 is the step of the multiway query.
For example, 𝑀1 has three steps referred to as 𝑀1.1, 𝑀1.2, and 𝑀1.3. We also present the
number of jobs 𝑛 for each query in Tables 4.1 and 4.2. The total number of tested instances
is 36 and they were scheduled for 𝑚 = (4, 8, 16, 32, 64) machines, that is, 180 schedules
for each method.

The parameters 𝜆𝑖 and 𝑡 were set to 𝜆𝑖 = 50 and 𝑡 = 3000, respectively, when
executing the procedure Solve-LR-Relaxation (Algorithm 4.1). The maximum number
of iterations 𝑡 was reached for 11 instances. For the other, in general, it stayed between 140
and 2700. The initial 𝑍𝑈 was provided by the GR method.

All algorithms were coded in the C language and compiled using Clang2 ver-
sion 3.8.0, with optimization flags -Ofast -march=native. Pisinger’s minknap algo-
rithm3 [72] was used to solve 𝐾𝐿𝑅(𝑖, 𝜇𝑘) inside the LR algorithm. To find the extreme
point solution for the LP method, we used an academic license of IBM ILOG CPLEX
Optimization Studio4, version 12.6.1. The model and its parameters are set into CPLEX
optimization module through CPLEX C API calls, and the extreme point solution is cap-
tured after the optimization finishes.

The experiments were executed in a m4.4xlarge Amazon EC2 machine, with
an Intel(R) Xeon(R) CPU, E5-2686 v4 model, running at 2.30GHz, and with 64GB of
RAM. Experiments that display execution time were performed in a more controlled local

Table 4.1: Additional multiway instances to provide intermediate
results and the number of jobs 𝑛 of each step.

Jobs 𝑛 in each step
Name Query 𝑀𝑖.1 𝑀𝑖.2 𝑀𝑖.3

𝑀1 ((𝐴 ⋈ 𝑅𝐼) ⋈ 𝑅𝐴) ⋈ 𝐶𝑅 148 69 69
𝑀2 (𝑅𝐼 ⋈ 𝑅𝐴) ⋈ 𝐸𝐶 5,572 5,477 -
𝑀3 (𝑅𝐼 ⋈ 𝐻𝐼) ⋈ 𝑅𝐴 10,298 5,544 -
𝑀4 ((𝑅 ⋈ 𝑅𝐼) ⋈ 𝑅𝐴) ⋈ 𝐸𝐶 581 263 229
𝑀5 ((𝐴 ⋈ 𝐻𝐼) ⋈ 𝐶𝑅) ⋈ 𝐶 112 112 112
𝑀6 ((𝑅𝐼 ⋈ 𝐸𝐶) ⋈ 𝐻𝐼) ⋈ 𝑅𝐴 10,019 9,870 5,450

Table 4.2: Number of jobs for each query 𝐽 .
Name Jobs Name Jobs Name Jobs Name Jobs
𝐽1 8,082 𝐽6 7,587 𝐽11 5,572 𝐽16 4,588
𝐽2 8,082 𝐽7 7,755 𝐽12 10,298 𝐽17 4,209
𝐽3 8,082 𝐽8 2,139 𝐽13 10,019 𝐽18 8,495
𝐽4 8,082 𝐽9 2,160 𝐽14 6,630 𝐽19 5,624
𝐽5 7,125 𝐽10 114 𝐽15 4,614 𝐽20 5,106

2http://clang.llvm.org
3http://www.diku.dk/~pisinger/codes.html
4http://www.ibm.com/software/commerce/optimization/cplex-optimizer/

4.11 Evaluation 81

environment, using an AMD Phenom(tm) II X6 1055T 2.8 GHz processor with 8G of
RAM, with a Linux distribution using Linux Kernel version 3.18.1.

4.11.1 Instances Characterization and the Affect of 𝑓
In this section, we characterize the instances tested, with respect to their pro-

cessing and communication cost, and show how the 𝑓 parameter affects the generation of
schedules by the three proposed methods.

For each query, we generated three schedules using GR, LP, and LR. The first
schedule used 𝑓 = 0, i.e., we ignored the makespan to search for the minimum commu-
nication cost. The second schedule used 𝑓=100,000, a sufficiently large value to make
communication cost irrelevant in all tested instances and obtain a schedule with the min-
imum possible makespan. The third schedule used a particular 𝑓 for each instance, in
order to make the contributions of the makespan and the communication cost in 𝑍𝑆𝑀
nearly equal (𝑍𝑆𝑀 /2 ≈ 𝑓𝑥0 ≈ ∑ 𝑐𝑖𝑗). This choice of value for 𝑓 also makes the instances
hard to solve and was empirically obtained through experimentation by determining the
range of values for 𝑓 , and selecting values for 𝑓 in the middle of this range, such that
𝑓𝑥0 ≈ 𝑍𝑆𝑀 /2. Additionally, all schedules used 𝑚 = 64, the larger 𝑚 in our experiments.
We selected some representative instances to show next. We provide the additional charts
in Appendix A, as well as the list of 𝑓 values used.

The axes in each scatter plot in Figure 4.1 are for the communication cost, in
MB, and the makespan (𝑥0). The charts show the relationship between the two conflicting
objectives. The common point in each chart for all methods (top-left corner) refers to the
schedule with minimum communication cost and the largest makespan. To the contrary,
the rightmost point for each method refers to the schedule with the smallest makespan
(𝑓=100,000). The methods showed different behaviors in this respect. In general, GR
provided a schedule with a relatively low makespan but at the price of an increased com-
munication cost. LP provided schedules with a larger makespan and a lower communi-
cation cost in general (e.g., 𝐽10, 𝑀4.1), but with some exceptions (e.g., 𝐽3). LR, in turn,
usually identified a schedule with the smallest makespan for all queries, sometimes with
an increased communication cost (e.g., 𝐽10 and 𝑀1.2).

Still, in Figure 4.1, the points near the bottom-left corner are of particular im-
portance. They represent the schedules with a challenging 𝑓 when we ask the methods
to reduce resource consumption the most. GR presented a solution favoring a smaller
makespan but with a high communication cost. LP presented almost the same schedule
both for a challenging 𝑓 and for 𝑓=100,000. This behavior occurred because LP ignores
the integrality constraints and sets the jobs fractionally onmachines, causing 𝑥0 = ∑ 𝑤𝑗 /𝑚
for any 𝑓 value. Thus, the partial schedule returned is always the same and the small dif-

4.11 Evaluation 82

150 200 250 300
2

3

4
⋅105

𝑥 0
𝐽1

0 2000 4000 6000 8000

0.5

1

1.5

2

⋅107

𝐽3

500 1000 1500 2000

2

4

6

⋅106

𝐽8

110 115 120 125

0.4

0.6

0.8
1

⋅106

𝑥 0

𝐽10

1200 1400 1600 1800
5

6

7

8

⋅106

𝐽12

2500 3000 3500

4

6

8
⋅106

𝐽16

1.33 1.34 1.35
2.34

2.36

2.38

2.4 ⋅104

Comm (MB)

𝑥 0

𝑀1.2

70 80 90

3

4

5

⋅105

Comm (MB)

𝑀4.1

4 5 6 7
0.5

1

1.5
⋅105

Comm (MB)

𝑀4.2

GR LP LR

Figure 4.1: Schedule makespan and communication cost for repre-
sentative tested instances using distinct values of 𝑓 .

ference noticed in 𝐽16 (and somewhat blurred in 𝐽8) is due to the repairing method, applied
at the end. LR provided the best schedules with respect to resource consumption, with a
makespan that is usually close to the minimum and a relevant improvement in the com-
munication cost (compare the proximity in 𝑥0 axis between the solution with minimum
makespan, at right, and the left point near it in the same line).

4.11.2 Quality of Generated Schedules
In this section, we compare each schedule provided by GR, LP, and LR and show

how close they are to a known lower bound (𝑍𝑙𝑏
𝑆𝑀) for the optimal value 𝑍∗

𝑆𝑀 , i.e., how
good they are with respect to the best possible schedule for each instance of SM. To get
𝑍𝑙𝑏

𝑆𝑀 , we processed SM in CPLEX and left the MIP solver to run from the root node,
applying all possible cuts. We present the distance between the proposed scheduled and
the lower bound, computed as gap = (𝑍+

𝑆𝑀 − 𝑍𝑙𝑏
𝑆𝑀)/𝑍𝑙𝑏

𝑆𝑀 , where the + signal indicates
the method used in each case, e.g., 𝑍𝐺𝑅

𝑆𝑀 .
Figure 4.2 presents the results. There are five charts, one for each number of

machines (𝑚). The gap scale is logarithmic focusing on near-optimal schedules. There
are three marks for each query, indicating the gap for GR, LP, and LR. A mark touching

4.11 Evaluation 83

the 𝑥 axis indicates a gap ≤ 0.01%, i.e., a schedule that is very close to the optimum
or even an optimal one. The gaps for GR are the largest ones, almost all fitting in the
range 10% − 100%. Although there exists an instance for which GR provided a good
schedule (𝑀5.2 for 𝑚 = 64), the average for all gaps is 25.07%, with a high standard
deviation (𝜎2 = 31.71%). LP improved the GR schedule in almost all instances. Example
instances for which it performedworst are𝑀1,𝑀2, and𝑀3, in nearly all steps and𝑚’s. The
main observation for LP is that the schedules were worst when the number of machines
𝑚 increased, going from 1.10% for 𝑚 = 4 to 10.88% for 𝑚 = 64. This occurs because
the number of jobs that were fractionally set increased with the number of machines. We
present some statistical values in Table 4.3 where it is possible to check this behavior. The
average of all gaps for LP is 6.38% (𝜎2 = 10.74%).

0.01
0.1

1
10

100
𝑚=4

GR LP LR

0.01
0.1

1
10

100
𝑚=8

0.01
0.1

1
10

100

ga
p
(%

)

𝑚=16

0.01
0.1

1
10

100
𝑚=32

𝐽 1 𝐽 2 𝐽 3 𝐽 4 𝐽 5 𝐽 6 𝐽 7 𝐽 8 𝐽 9 𝐽 1
0

𝐽 1
1

𝐽 1
2

𝐽 1
3

𝐽 1
4

𝐽 1
5

𝐽 1
6

𝐽 1
7

𝐽 1
8

𝐽 1
9

𝐽 2
0

𝑀
1.1

𝑀
1.2

𝑀
1.3

𝑀
2.1

𝑀
2.2

𝑀
3.1

𝑀
3.2

𝑀
4.1

𝑀
4.2

𝑀
4.3

𝑀
5.1

𝑀
5.2

𝑀
5.3

𝑀
6.1

𝑀
6.2

𝑀
6.3

0.01
0.1

1
10

100
𝑚=64

Figure 4.2: Gap between each schedule provided by GR, LP, and
LR and a know lower bound of 𝑍∗

𝑆𝑀 , for 𝑚 ∈
{4, 8, 16, 32, 64}. 𝑦 axis is logarithmic to emphasizes
the near-optimal schedules.

4.11 Evaluation 84

Table 4.3: Average and standard deviation for gaps in Figure 4.2.
Average for 𝑚 Standard deviation for 𝑚

Method 4 8 16 32 64 4 8 16 32 64
GR 12.0 26.8 37.3 27.1 22.2 5.9 26.1 51.0 29.6 22.4
LP 1.1 3.0 7.2 9.8 10.9 1.7 4.7 12.4 12.6 13.0
LR 0.1 0.2 0.6 0.8 0.5 0.2 0.4 0.9 1.6 0.8

LR presented the smallest gaps. Observing Figure 4.2, for 𝑚 = 4, there are 21
out of 36 instances with gap ≤ 0.01% and the other 15 have gap ≤ 1% (check the dotted
line at gap = 1). The gaps also increased when 𝑚 increased, but in a small proportion
(see LR line on Table 4.3). For 𝑚 = 8, 34 instances still presented gap ≤ 1% and two had
a gap > 1% (≤ 1.8). For 𝑚 = 64, 31 instances presented gap ≤ 1% and the other five
1 ≤ gap ≤ 4.5%. From all 180 runs, there are only 10 cases for which LR presented worse
schedules than LP (𝐽{3,7} for 𝑚 = 4, 𝐽{3,7,9} for 𝑚 = 8, 𝐽{3,6,7,9} for 𝑚 = 16, and 𝐽9 for
𝑚 = 32). LR presented the best gap in all instances when 𝑚 = 64 and also, the best gap
for all 𝑀 instances. The average for all gaps is 0.43% (𝜎2 = 0.94%).

4.11.3 Comparison of the Execution Times
This section presents the execution time for GR, LP, and LR. Despite the fact

that we already provided the time complexity of each method, here we provide the
computational experience in solving practical instances of the problem. In this experiment,
CPLEX parallel execution option was disabled, i.e., the solver was limited to use only
one OS thread. The other two methods, GR and LR, are implemented sequentially, and
thus, all methods used only one thread. The time reported is wall clock time, obtained
using the function clock_gettime with the argument CLOCK_REALTIME. Furthermore,
we measured only the time taken in the optimization function, discarding initial dataset
loading, jobs enumeration, and other final routines such as memory release.

Figure 4.3 presents the results. The 𝑦 axis shows the execution time in seconds
using a log scale. As the behavior is very specific for each instance, we present in (𝑎),
(𝑏), and (𝑐), the minimum, the average, and the maximum execution time, respectively, for
all instances. The complete set of execution times is provided in Appendix A for further
reference. As expected by the time complexity analysis, GR is the best, followed by LP
and next by LR. The execution time increases for all methods when 𝑚 increases. GR has
an average time per query of 2.0 ms for 𝑚 = 4, and 7.4 ms to 𝑚 = 64. LP presented the
second best time, with an average of 51.6 ms for 𝑚 = 4, and 2.7 seconds for 𝑚 = 64. LR,
in turn, has an average of 1.1 seconds for 𝑚 = 4, and 14.4 seconds for 𝑚 = 64. The small
dot for each bar in (𝑏) indicates the standard deviation and it shows that LP execution time
is less stable between instances than GR and LP (note the dot above average for LP when

4.11 Evaluation 85

4 8 16 32 64
10−5

10−4

10−3

10−2

10−1

𝑚

se
co

nd
s

𝑎

4 8 16 32 64
10−3
10−2
10−1

100
101

𝑚

𝑏

GR LP LR

4 8 16 32 64

10−2
10−1

100
101
102

𝑚

𝑐

Figure 4.3: Execution time for GR, LP, and LR. (𝑎) shows the min-
imum execution time, (𝑏) the average, and (𝑐) the max-
imum execution time for all 𝐽 and 𝑀 queries.

𝑚 >= 8, considering the log scale). The maximum execution time for 𝑚 = 64 for GR, LP,
and LR are 16.8 ms, 14.9 s, 43.1 s, respectively.

As described in the introduction of this chapter, for ad-hoc queries, the time to
optimize the query has to be smaller than the time to execute it. In this scenario, the method
of optimization can be chosen based on the expected runtime of the query, estimated based
on its processing costs. For small ad-hoc queries the only reasonable option is GR.

If we focus on system throughput, LR appears as the most promising candidate,
although a strategy to amortize its footprint may be worthwhile. One option is to cache and
reuse the execution plan after the query optimization, a common strategy used for repetitive
or stored queries in non-spatial DBMSs [37]. Other options to reduce the optimization time
exist, considering that we can efficiently parallelize LR by splitting the execution of the
𝑚 Knapsack instances in each iteration. The same applies only partially to LP. Although
there exist parallel versions of the Simplex algorithm, their effectiveness is not always
guaranteed as it relies on the problem structure [41].

4.11.4 Performance of SM Schedules in FM
This section evaluates how a solution for SM performs when considered as a

solution for FM. We recall from Section 4.5 that a feasible solution for SM is also feasible
for FM. The difference is that to compute the communication costs in FM, the objective
function sums the cost ̂𝑐 and ̄𝑐 only once for each machine in which a job is executed. In
this evaluation, we substitute the solution 𝑥 given for SM in the FM objective function and
compared the value obtained with a lower bound for FM.

Similar towhat we did for the evaluation in Section 4.11.2, we computed the lower
bound 𝑍𝑙𝑏

𝐹 𝑀 for the optimal value 𝑍∗
𝐹 𝑀 by processing FM in CPLEX and leaving the MIP

solver to run from the root node. The gap was computed using (𝑍+
𝐹 𝑀 −𝑍𝑙𝑏

𝐹 𝑀)/𝑍𝑙𝑏
𝐹 𝑀 , where

the + signal indicates the method, e.g, 𝑍𝐺𝑅
𝐹 𝑀 .

Figure 4.4 shows five charts, for 𝑚 = (4, 8, 16, 32, 64). Each query has a bar with
three marks, indicating the gap for GR, LP, and LR. Comparing the methods, LR presented

4.11 Evaluation 86

the smallest gaps of the three. For 𝑚 = 4, gaps for LP and LR are similar (note the triangle
inside the square). This behavior starts to degenerate for 𝑚 = 8 and becomes marked after
𝑚 = 16. GR presented the smallest gaps for 𝐽3 when 𝑚 = (8, 16), and a gap better than
LP for some queries (e.g., 𝑀1 for 𝑚 >= 16). For the other instances, however, the method
provided the worst gaps. Average for gaps of GR ranged from 22.8% (𝑚 = 4) to 48.1%
(𝑚 = 64) when considering all queries. The range for LP was from 12.8% (𝑚 = 4) to
30% (𝑚 = 64), and for LR from 11.5% (𝑚 = 8) to 16.9% (𝑚 = 32). The gaps for GR and
LP increased with 𝑚, as can be seen in Table 4.4. LR gaps also increased but to a smaller
extent.

The charts in Figure 4.4 show that, in general, the solutions provided by a method
for SM were at least 11% more costly than a possible solution for FM. However, as we
measured the gapwith the lower bound, it does not mean that a solutionwith 𝑍𝑙𝑏

𝐹 𝑀 ≈ 𝑍∗
𝐹 𝑀

exists. Computing the gap with 𝑍∗
𝐹 𝑀 would be better, but it is also impracticable with a

0
20
40
60
80

𝑚=4

GR LP LR

0
20
40
60
80

𝑚=8

0
20
40
60
80

ga
p
(%

)

𝑚=16

0
20
40
60
80

𝑚=32

𝐽 1 𝐽 2 𝐽 3 𝐽 4 𝐽 5 𝐽 6 𝐽 7 𝐽 8 𝐽 9 𝐽 1
0

𝐽 1
1

𝐽 1
2

𝐽 1
3

𝐽 1
4

𝐽 1
5

𝐽 1
6

𝐽 1
7

𝐽 1
8

𝐽 1
9

𝐽 2
0

𝑀
1.1

𝑀
1.2

𝑀
1.3

𝑀
2.1

𝑀
2.2

𝑀
3.1

𝑀
3.2

𝑀
4.1

𝑀
4.2

𝑀
4.3

𝑀
5.1

𝑀
5.2

𝑀
5.3

𝑀
6.1

𝑀
6.2

𝑀
6.3

0
20
40
60
80 𝑚=64

Figure 4.4: Gap between each schedule provided by GR, LP, and
LR and a know lower bound of 𝑍∗

𝐹 𝑀 , for 𝑚 ∈
{4, 8, 16, 32, 64}.

4.12 Broader Applicability of FM 87

Table 4.4: Average and standard deviation for gaps in Figure 4.4.
Average for 𝑚 Standard deviation for 𝑚

Method 4 8 16 32 64 4 8 16 32 64
GR 22.8 30.1 37.7 42.2 48.1 24.4 38.8 38.8 11.2 17.0
LP 12.8 15.1 20.8 25.3 30.0 14.0 26.9 26.9 8.6 8.8
LR 11.5 11.4 13.1 14.7 16.9 8.3 14.3 14.3 9.2 7.9

generic solver. For instance, when 𝑚 = 64, 𝑀6.1 and 𝐽2 took more than four and five
hours, respectively, only to compute the relaxation for the root node of the problem.

Let us illustrate the additional resource consumption that these gaps can cause for
a query, by assuming that an optimal solution exists such that 𝑍𝑙𝑏

𝐹 𝑀 = 𝑍∗
𝐹 𝑀 and providing

an upper bound on the improvement of communication cost. Although the makespan may
change when we solve FM to optimality, it should remain somewhat stable for a typical
instance. Thus, the communication cost can be reduced by at most 𝛿 ≈ 𝑍𝐿𝑅

𝐹 𝑀 − 𝑍𝑙𝑏
𝐹 𝑀 in

the optimal LR solution under these assumptions. As the communication cost is measured
by the number of points and a point occupies 32 bytes, we can estimate the additional
network traffic. For instance, 𝑀6.1 has a gap of 20.5%, with 𝑍𝑙𝑏

𝐹 𝑀 = 5.85904e+8 and
𝑍𝐿𝑅

𝐹 𝑀 = 6.34053e+8, thus 𝛿 ∗32/230 ≈ 1.43 GB, a significant amount of additional traffic
for only one step of a multiway query.

Finally, let us discuss the trade-off between running time and solution quality for
the three methods studied. In general, GR took a few milliseconds to run but presented
solutions with poor quality. For instance, consider the larger gap often given by GR in this
experiment (depicted in Figure 4.4). Although LR has a higher running time, it provided
high-quality solutions. LP, in turn, has intermediate speed and quality. Thus, recalling the
running time of LR in the tested instances (average of 15s and maximum of 43s) and the
quality of its solutions, we recommend the use of LR observing the often large running
time of spatial queries with mid-size or large datasets.

4.12 Broader Applicability of FM
The model proposed here is suitable for the scheduling of jobs composed of data

partitions previously distributed in a number of interconnected machines, which need to be
aligned to compute a predicate or process an algorithm (𝜃).We need to know in advance, or
through estimates, the processing costs of 𝜃 and the network traffic caused by the alignment
of the data partitions.

This definition takes into account the processing of multiway spatial join queries,
as it is the main application described in this thesis, but can be generalized for other
kinds of distributed systems as well. Two of these systems that have recently gained much

4.13 Final Considerations 88

attention in the research community are MapReduce frameworks [24] and its in-memory
and more general counterpart, Spark engine [92].

The jobs in these systems are characterized by key-value pairs produced by amap
function. Each key can be reported by several machines. Each “key slice” produced by a
machine needs to be aligned with other slices of the same key to be processed by a reduce
function. The reduction produces the desired result by applying the predicate or algorithm
(𝜃, as we defined here). The default scheduler is known to perform a balanced execution
when the data being processed produce keys with a uniform load. However, skewed jobs
present a significant challenge [49], and a load balancing mechanism is necessary to
mitigate the effect of uneven work allocation [26].

Moseley et al. [60] and Verma et al. [86] recently investigated the scheduling of
MapReduce jobs. Moseley et al. [60] proposed the scheduling of MapReduce jobs as a
generalized version of the classical two-stage flexible flow-shop problem with identical
machines [51]. They provided a 12-approximate algorithm for the offline problem of
minimizing the total flow time, which is the sum of the time between the arrival and
the completion of each job. Verma et al. [86] investigated the scheduling of jobs using
the same flow-shop problem, but with a different objective of minimizing the maximum
completion time for a set of jobs. Both studies ignored data transfer between machines.
However, in MapReduce jobs, intermediate data is transferred from the map to the reduce
machines and thus, the network bandwidth causes a significant bottleneck, making data
locality an important issue to be considered.

As we modeled data locality in FM, and as the size of MapReduce jobs seems to
support the time required to run the algorithms we proposed, as a future work we hope to
apply and evaluate our algorithms within the scheduler of such systems.

4.13 Final Considerations
In this chapter, we dealt with the assignment of jobs to machines in a locally

distributed system.We considered a set of jobs defined by data partitions from two datasets
that are aligned by a spatial predicate when processing a multiway spatial join query.
We introduced a multi-objective linear integer model for the problem, called FM, that
considers the minimization of both makespan and communication cost as objectives. We
discussed the difficulty of solving it and presented a simplified model, SM, for which
we introduced algorithms based on two combinatorial methods: the well-known Linear
Relaxation and the more sophisticated Lagrangian Relaxation.

Themethod based on Lagrangian Relaxation (LR) provided better solutions when
compared with the Linear Relaxation method (LP), as well as with a greedy algorithm
(GR). Although LR often needs significant time to compute a solution, we presented

4.13 Final Considerations 89

scenarios for which it may be applied by observing how close the approximate solutions
are to the optimum and the resource consumption improvement that it achieved. LP and
GR are recommended for scenarios where small ad-hoc queries are predominant.

The number of histogram cells, and the intersection of the dataset’s extent area,
determine the number of jobs in the instances. The number of jobs, in turn, is a major
component of the complexity of the studied methods. Although we can reduce the number
of partitions to reduce the optimization time by concatenating histogram cells, it may cause
worse estimates and also more skewed partitions, which often results in an unbalanced
query execution. Also, a larger number of partitions increases the opportunity for using
parallelism, which is important when using larger clusters and processing large queries.

Regarding the number of machines, we saw that its increase causes worse sched-
ules when using LP and GR as well as longer computational times with LR. As the number
of machines considered here can be thought of as moderate, compared to today’s clusters
with hundreds of machines, improving the methods in this respect will be pertinent in
future research.

Furthermore, besides the number and the characteristics of the tested instances,
we recall that we used an initial data distribution given by a round-robin algorithm. Other
initial data distributions can present distinct behavior and should be investigated. However,
as the LR method takes the parameter 𝑓 into account, we believe that it should provide
schedules with low resource consumption even for other data distributions.

Notwithstanding, even the schedules computed by LR presented a significant
gap for FM, indicating that there is room for improving the scheduling even further. We
illustrated through an estimate how the network traffic might reduce if we find near-
optimal solutions for an instance. According to our computational experience, even the
Linear Relaxation cannot be directly applied in reasonable time (recalling the prohibitive
time to compute the root relaxation for some queries). Further research is needed to
discover an exploitable structure, such that we can apply the Lagrangian Relaxation or
other technique to FM. We regard this as future research.

Finally, a remaining question is how to determine a value for the parameter 𝑓 . As
it is non-trivial to find a suitable value for it, in the next chapter we present a Parametric
Analysis for 𝑓 and show how to compute the format of the objective function.

CHAPTER 5
Controlling the Consumption of Computational
Resources in Query Scheduling

As discussed in Chapter 4, when defining a schedule to process a query we
want to control the scheduling behavior concerning the usage of computational resources,
i.e., processing and network capacity. Our evaluation showed that attempting to minimize
both processing and network utilization creates conflicting objectives, in the sense that to
achieve a better balance in the query execution (and consequently a reduced makespan),
an extra cost is incurred to transfer partitions to machines that are underloaded. To address
this issue, we introduced a parameter in the models (SM and FM), termed 𝑓 , to specify
the degree of preference for a more balanced execution or for a lower usage of network
resources.

From a practical perspective, if the only concern for query execution is the com-
munication cost, selecting a value for 𝑓 is trivial (𝑓=0). Analogously, if the only concern
is the makespan, we can readily select a sufficiently large value for 𝑓 so as to ignore the
communication cost in the objective function. Often, however, the computational envi-
ronment imposes constraints in both makespan and communication costs, and selecting a
value for 𝑓 that achieves a balance between these two objectives results in a reasonable
saving of computational resources, as we have shown in the previous chapter. Each numer-
ical instance of the models FM and SM has a particular given value for 𝑓 but determining
a suitable value of 𝑓 is a non-trivial task, as it depends on the values of the processing and
communication costs (𝑤𝑗 , ̂𝑐𝑖𝑎, and ̄𝑐𝑖𝑏).

In this chapter, we address the question of determining an appropriate value for
𝑓 by studying the effects of variations on this value on the optimal schedule for SM. We
demonstrate how to determine intervals of 𝑓 values for which an optimal schedule for
SM remains unchanged. By establishing these intervals, we can identify the shape of the
objective function ((SM.1) in Chapter 4) and provide answers to some practical questions
that arise when scheduling queries using the SM model, such as: 𝑖) is it possible to reduce
the makespan of a query even further?, 𝑖𝑖) if yes, what is the minimum makespan and
the additional communication cost incurred?, 𝑖𝑖𝑖) analogously, what is the increase in

5.1 Introduction to Parametric Analysis 91

makespan if we have to reduce the communication cost on a low bandwidth network?,
and 𝑖𝑣) what is the maximum value for 𝑓 for which a change in makespan occurs?

For linear programming, a fully-developed theory exists to determine valid inter-
vals for the parameters of a model, for which an optimal schedule remains unchanged. It is
known as post-optimality analysis [6]. This theory, however, is not valid for integer linear
programming, and it turned out that a similar theory for the integer case is inherently more
challenging and yet not fully developed [8]. Notwithstanding, by adapting the concepts on
post-optimality analysis for linear integer programs presented in the classic paper by Ge-
offrion and Nauss [36], it is theoretically possible to conduct a parametric analysis (PA)
of 𝑓 that produces a sequence of optimal schedules for an SM instance for every possible
𝑓≥0.

As it is expensive to find optimal schedules for practical SM instances, we assume
that this should be done as few times as possible during the PA process. Also, we show
that by using approximate schedules for SMwe can define an upper bound for the value of
the objective function. Although this does not furnish a complete PA, it provides valuable
information when finding optimal schedules is either quite difficult or very expensive.

The chapter is organized as follows. The introduction for PA is given in Sec-
tion 5.1. Section 5.2 presents how to obtain the range of 𝑓 values for the PA and is fol-
lowed by a practical illustration for a simple numerical instance (Section 5.3). Next, we
introduce useful results for the PA in Section 5.4 and how to get bounds on the objective
function of SM in Section 5.5. Section 5.6 presents the PA process, i.e., the general de-
scription of the steps to conduct the PA and determine the shape of the objective function.
Section 5.7 illustrates the PA process via a numerical example of a modified version of
a practical multiway spatial join query, with integer 𝑤𝑗’s and 𝑐𝑖𝑗’s. Section 5.8 describes
how to compute an upper bound for the objective function by using approximate schedules
for SM. Some final considerations are presented in Section 5.9.

5.1 Introduction to Parametric Analysis
Parametric Analysis (PA) is the study of a family of optimization problems, either

having the same structure but differing only by the values of one or more parameters (or
coefficients) or having different, but related structure [36]. By carrying out a PA for a
problem, we are interested in discovering whether or not a change in some parameter
implies a change to a previously-computed optimal schedule. Often, there exist valid
ranges for a parameter for which an optimal schedule remains unchanged. By exploring
these ranges, we may discover all the optimal schedules for a family of problems, incurring
in an effort less than directly proportional to that required to solve a single member.

5.1 Introduction to Parametric Analysis 92

The most common PA analyses are concerned with the variation of coefficients
in the objective function or of coefficients in the right-hand side (r.h.s.) of the constraints.
Here we confine ourselves in carrying out a PA for the 𝑓 parameter in the objective
function of SMdue to our interest in controlling the consumption of resources, as explained
in the introduction of this chapter. There could be analogous analyses of the 𝑐𝑖𝑗 and 𝑤𝑗
values as well, but often there is a huge number of 𝑐𝑖𝑗 parameters and a change in any of
the 𝑤𝑗 parameters may result in a change of the set of feasible schedules, which is a major
complication.

To start the parametric analysis of 𝑓 , consider the SM model given in Chapter 4,
reproduced here as (SM.1) – (SM.4):

𝑍𝑆𝑀 = Min 𝑓𝑥0 +
𝑚

∑
𝑖=1

𝑛

∑
𝑗=1

𝑐𝑖𝑗𝑥𝑖𝑗 , (SM.1)

s.t.
𝑚

∑
𝑖=1

𝑥𝑖𝑗 = 1, 𝑗 = 1, … , 𝑛 (SM.2)

𝑛

∑
𝑗=1

𝑤𝑗𝑥𝑖𝑗 + 𝑢𝑖 ≤ 𝑥0, 𝑖 = 1, … , 𝑚 (SM.3)

𝑥𝑖𝑗 ∈ {0, 1}. 𝑗 = 1, … , 𝑛; 𝑖 = 1, … , 𝑚 (SM.4)

Let us relabel 𝑍𝑆𝑀 as 𝑍, for short. To facilitate the PA of 𝑓 , we consider that 𝑍,
𝑥0 and the 𝑥𝑖𝑗’s are all functions of 𝑓 . From (SM.1), let 𝑍(𝑓) = 𝑀(𝑓) + 𝐶(𝑓), where:

𝑀(𝑓) = 𝑓𝑥0, the contribution to 𝑍(𝑓) of the makespan 𝑥0, and

𝐶(𝑓) =
𝑚

∑
𝑖=1

𝑛

∑
𝑗=1

𝑐𝑖𝑗𝑥𝑖𝑗 , the contribution to 𝑍(𝑓) of the total communication cost.

For the sake of an efficient PA, we assume throughout that the 𝑤𝑗’s are integers
in any SM instance. This assumption is not unrealistic for practical SM instances, as the
parameters that result from the probability formulas of the cost model (Chapter 3) can be
safely ignored or rounded if there is uncertainty in the estimates.

The following proposition is useful in the PA process and arises from the fact that
𝑓 is confined in the objective function:

Proposition 5.1. Changes to 𝑓 do not affect the set of feasible schedules for SM.

Proof. As 𝑓 appears only in the objective function (SM.1), varying 𝑓 changes only the
total cost 𝑍(𝑓) and not which schedules are feasible, i.e., the ones obeying (SM.2) and
(SM.4). 2

5.2 Finding Bounds for PA 93

5.2 Finding Bounds for PA
In this section, we find a suitable range of 𝑓 values for the PA. A lower bound

for 𝑓 arises from the fact that 𝑓 is a time–cost conversion factor, and thus, 𝑓≥0. When
𝑓=0, the first expression in (SM.1), i.e., 𝑀(𝑓) disappears. This makes constraint (SM.3)
irrelevant, and it can be dropped. SM then becomes SM0 (𝑓=0), given by (SM0.1), (SM.2),
and (SM.4), which can be solved trivially by greedily assigning each job to its lowest cost
processor.

𝑍𝑆𝑀0 = min
𝑚

∑
𝑖=1

𝑛

∑
𝑗=1

𝑐𝑖𝑗𝑥𝑖𝑗 , (SM0.1)

s.t.
𝑚

∑
𝑖=1

𝑥𝑖𝑗 = 1, 𝑗 = 1, … , 𝑛 (SM.2)

𝑥𝑖𝑗 ∈ {0, 1}. 𝑗 = 1, … , 𝑛; 𝑖 = 1, … , 𝑚 (SM.4)

Upper and lower bounds on 𝑥0, the makespan, are useful when determining an
upper bound for 𝑓 , as we shall see shortly. An upper bound on the makespan 𝑥0 for any
feasible schedule for SM, denoted here by 𝑥𝑈𝐵

0 , can be determined by computing the
makespan of the schedule obtained by solving SM0. A lower bound on the makespan,
denoted as 𝑥𝐿𝐵

0 , can be obtained from the expression (5-1) below. If 𝑥𝐿𝐵
0 = 𝑥𝑈𝐵

0 , the PA
process can be terminated as the schedule identified when solving SM0 is optimal for all
𝑓≥0.

𝑥𝐿𝐵
0 =

⌈
∑𝑛

𝑗=1 𝑤𝑗
𝑚 ⌉

(5-1)

Furthermore, we can identify an upper bound on 𝑓 , denoted by 𝑓 ′, that estab-
lishes the range for conducting the PA for SM. We want to find the minimum value of 𝑓 ′

such that it is unnecessary to consider values of 𝑓≥𝑓 ′. That is, we want to find the value
𝑓 ′ with the characteristic that the optimal schedule for any 𝑓≥𝑓 ′ is the same as the one
for 𝑓=𝑓 ′. A schedule obtained for 𝑓 ′ corresponds to the lowest possible makespan of any
feasible schedule.

To find 𝑓 ′, we solve the following family of problems that are versions of SM in
which themakespan is fixed at 𝑥0 = 𝑥𝐿𝐵

0 and then progressively incremented by one unit at
a time. Themakespan 𝑥0 is no longer a decision variable, and 𝑀(𝑓) in SM can be dropped.
Furthermore, the right–hand side of (SM.3), can be replaced by 𝑥𝐿𝐵

0 + 𝑞 in (SM𝑞.3),
where the parameter 𝑞 is incrementally increased until two feasible schedules with the
same overall total cost are identified. Then we have the family of models SM𝑞 (𝑞 = 0,
1, …) given by (SM𝑞.1) – (SM𝑞.4), which constitute a special case of the Generalised
Assignment Problem, GAP [85], a known NP-Hard problem.

5.2 Finding Bounds for PA 94

𝑍𝑞(𝑞) = Min
𝑚

∑
𝑖=1

𝑛

∑
𝑗=1

𝑐𝑖𝑗𝑥𝑖𝑗 , (SM𝑞.1)

s.t.
𝑚

∑
𝑖=1

𝑥𝑖𝑗 = 1, 𝑗 = 1, … , 𝑛 (SM𝑞.2)

𝑛

∑
𝑗=1

𝑤𝑗𝑥𝑖𝑗 + 𝑢𝑖 ≤ 𝑥𝐿𝐵
0 + 𝑞, 𝑖 = 1, … , 𝑚 (SM𝑞.3)

𝑥𝑖𝑗 ∈ {0, 1}. 𝑗 = 1, … , 𝑛; 𝑖 = 1, … , 𝑚 (SM𝑞.4)

To find 𝑓 ′, we solve SM𝑞 for successive values of 𝑞 = 0, 1, … until two distinct,
feasible schedules have been identified. Note that some SM𝑞 instances may not have a
feasible schedule corresponding to certain values of 𝑞. Suppose that the first two feasible
schedules found correspond to 𝑞 = 𝑞1 and 𝑞 = 𝑞2 with 𝑥𝐿𝐵

0 ≤ 𝑥𝐿𝐵
0 +𝑞1 < 𝑥𝐿𝐵

0 +𝑞2. Hence,
the first (second) schedule corresponds to makespan 𝑥0 = 𝑥𝐿𝐵

0 + 𝑞1 (𝑥0 = 𝑥𝐿𝐵
0 + 𝑞2) with

total communication cost 𝑍𝑞(𝑞1) (𝑍𝑞(𝑞2)) where 𝑍𝑞(𝑞1) > 𝑍𝑞(𝑞2). Exceptionally, when
𝑍𝑞(𝑞1) = 𝑍𝑞(𝑞2), there is only one feasible schedule with 𝑓 ′ = 0. The PA for this case is
trivial, and so henceforth we assume that 𝑞1 < 𝑞2.

We wish to find the lowest 𝑓 ′ so that the total cost 𝑍(𝑓 ′), as defined by (SM.1),
of the two feasible schedules found are equal. This occurs when:

𝑍(𝑓 ′) = (𝑥𝐿𝐵
0 + 𝑞2)𝑓 ′ + 𝑍𝑞(𝑞2) = (𝑥𝐿𝐵

0 + 𝑞1)𝑓 ′ + 𝑍𝑞(𝑞1). (5-2)

Solving for 𝑓 ′, we have:

𝑓 ′ =
𝑍𝑞(𝑞1)–𝑍𝑞(𝑞2)

𝑞2–𝑞1
. (5-3)

For 𝑓≥𝑓 ′, the schedule with makespan 𝑥0 = 𝑥𝐿𝐵
0 + 𝑞1 and total communication

cost 𝑍𝑞(𝑞1) is optimal. Hence 𝑓=𝑓 ′ is a suitable upper bound for 𝑓 , and it is thus sufficient
to conduct the PA in the range 0 ≤ 𝑓 ≤ 𝑓 ′. The models in [36] introduce a fractional
parameter 𝜃 and instead of a PA over the range 0 ≤ 𝑓 ≤ 𝑓 ′, the authors conduct an
equivalent PA over 0 ≤ 𝜃 ≤ 1. Such a transformation is unnecessary for SM, and our PA
remains over 0 ≤ 𝑓 ≤ 𝑓 ′.

In the next section, we provide a simple numerical example to aid the understand-
ing of the proposed method to find 𝑓 ′. The method is also used to produce 𝑓 ′ for the SM
instance given in Section 5.7.

5.3 Bounds for a Simple Numerical Example 95

5.3 Bounds for a Simple Numerical Example
In this section, we illustrate the ideas on Section 5.2 via the following numerical

example. Consider the SM𝑞 instance with 𝑚 = 4, 𝑛 = 5, 𝑤1 = 3, 𝑤2 = 3, 𝑤3 = 3, 𝑤4 = 5,
𝑤5 = 6, 𝑢𝑖 = 0, 𝑖 = 1, … , 5; and the 𝑐𝑖𝑗’s given in Table 5.1.

Table 5.1: The communication costs for the SM instance.

𝑐𝑖𝑗 1 2 3 4 5
1 0 0 300 0 0
2 0 0 200 0 0
3 0 0 100 0 0
4 0 0 300 0 0

Using (5-1), we have that:

𝑥𝐿𝐵
0 =

⌈
∑𝑛

𝑗=1 𝑤𝑗
𝑚 ⌉

= ⌈
20
4 ⌉ = 5.

In solving the instances SM𝑞 for 𝑞 = 0, 1, 2, 3, that is, for 𝑥0 = 5, 6, 7, 8,…, it is
easily seen that, as 𝑤5 = 6, there is no feasible schedule for 𝑞 = 0 (𝑥0 = 5). Furthermore,
there is no feasible schedule for 𝑞 = 2 (𝑥0 = 7) either. Let 𝑝(𝑗) = 𝑖 if the job 𝑗 is assigned
to processor 𝑖, 𝑗 = 1, … , 𝑛. The vector of 𝑝(𝑗)’s is denoted by 𝑝.

The first feasible schedule occurs for 𝑞1 = 1, with 𝑥0 = 𝑥𝐿𝐵
0 + 1 = 6, 𝑝 = (1,

2, 2, 3, 4) and the total communication cost 𝑍𝑞(1) = 200. The second feasible schedule
occurs for 𝑞2 = 3, with 𝑥0 = 𝑥𝐿𝐵

0 + 3 = 8, 𝑝 = (1, 2, 3, 3, 4) and the total communication
cost 𝑍𝑞(3) = 100. Using (5-3), we have that:

𝑓 ′ =
𝑍𝑞(𝑞1)–𝑍𝑞(𝑞2)

𝑞2–𝑞1
= 200–100

3–1 = 50.

Therefore, for 𝑓≥50, the schedule: 𝑥0 = 6, 𝑝 = (1, 2, 2, 3, 4), with communication
cost 200 and total cost 6𝑓 +200 is optimal. Thus, the PA can be carried out for this instance
within the range 0 ≤ 𝑓 ≤ 50.

5.4 Useful Results for PA
PA involves finding optimal schedules (and their costs) for the problem (SM.1) –

(SM.4) for all ranges of 𝑓 within 0 ≤ 𝑓 ≤ 𝑓 ′. Recall that 𝑓 ′ has the property that
the optimal schedule for 𝑓=𝑓 ′ remains optimal for all 𝑓≥𝑓 ′. We now ask the following
question. If an optimal schedule has been found for a particular value of 𝑓 , for what other
values of 𝑓 will the resulting schedule still be optimal? The following proposition (restated

5.4 Useful Results for PA 96

here regarding SM) is stated by Geoffrion and Nauss [36, p. 459] as Proposition 3.3, is
very useful for the PA of SM.

Proposition 5.2. The optimal value 𝑍∗(𝑓) for 0 ≤ 𝑓 ≤ 𝑓 ′ is piecewise–linear, continu-
ous and concave on its finite domain.

Proof. Noltemeier [64]. 2
Suppose that 𝑍∗(𝑓) is drawn as a function of 𝑓 . As an example, the graph of

𝑍∗(𝑓) for an SM instance (𝑀𝑝𝑎) is given in Figure 5.1. For the sake of clarity, the axes
have not been drawn to scale. Proposition 5.2 implies that 𝑍∗(𝑓) consists of straight–
line segments (piecewise linear) joined together (continuous) and, starting from 𝑓=0, the
segments never increase in slope (concave). The value of 𝑓 corresponding to a break in
the graph of 𝑍∗(𝑓) is termed a breakpoint. It can be seen in Figure 5.1 that 𝑀𝑝𝑎 has six
breakpoints, at 𝑓=4, 5, 24, 29, 31, and 49. Any SM instance has two distinct optimal
schedules at each of its breakpoints 𝑓 , each with total cost 𝑍∗(𝑓) = 𝑓𝑥1

0 + 𝐶1 = 𝑓𝑥2
0 + 𝐶2

where, 𝑥1
0 (𝑥2

0) is the makespan of the first (second) schedule, and 𝐶1 (𝐶2) is the total
communication cost of the first (second) schedule.

The following propositions for SM based on the rationale behind the theory of
the linear equation and the already presented propositions are useful in the PA process:

Proposition 5.3. The slope of 𝑍∗(𝑓) for each segment is the makespan 𝑥∗
0, and the point

where each segment crosses the vertical axis (where 𝑓=0) is the total communication cost
𝐶(𝑓), of the corresponding optimal schedule.
Proof. 𝑍∗(𝑓) = 𝑀(𝑓) + 𝐶(𝑓) is a linear function in the slope-intercept form, 𝑦 = 𝑚𝑥 + 𝑏,
where 𝑚𝑥 corresponds to 𝑀(𝑓) = 𝑓𝑥0 and 𝑏 corresponds to 𝐶(𝑓). 2

4 5 24 29 31 49

7292

7326

7934

8089

8147

8597

35
𝑓

+
71

52

34𝑓 + 7156
32𝑓 + 7166

31𝑓 + 7190

29𝑓 + 7248

25𝑓 + 7372

23𝑓 + 7470

𝑓

𝑍∗(𝑓)

Figure 5.1: The parametric analysis of 𝑀𝑝𝑎.

5.5 Bounds on 𝑍∗(𝑓) 97

Proposition 5.4. As 𝑓 increases, 𝑥∗
0 never increases, and 𝐶(𝑓) never decreases.

Proof. Follows easily from Propositions 5.2 and 5.3. 2
Proposition 5.5. 𝑍∗(𝑓) has a finite number of segments.
Proof. Elementary, because the feasible region of SM is bounded. 2
Proposition 5.6. The optimal schedule remains the same over each segment.
Proof. By Proposition 5.4, and observing that an optimal schedule with distinct 𝑥∗

0 and
𝐶(𝑓) causes a new breakpoint on 𝑍∗(𝑓), and consequently, a new segment. 2

A natural question to ask is what the segments for 𝑍∗(𝑓) are? The next two
sections present a method to find them. We first introduce how to find bounds on 𝑍∗(𝑓)
(Section 5.5) and next, in Section 5.6, we show how to obtain the segments for PA.

5.5 Bounds on 𝑍∗(𝑓)
We now find bounds on 𝑍∗(𝑓) to be used in the iterative PA process for SM over

0 ≤ 𝑓 ≤ 𝑓 ′. The computation of bounds is illustrated in Figure 5.2. Figure 5.2A shows the
points 𝑃1 = (𝑓1, 𝑍∗(𝑓1)) and 𝑃2 = (𝑓2, 𝑍∗(𝑓2)) representing the total costs of the known
optimal schedules corresponding to 𝑓=𝑓1 and 𝑓=𝑓2. Straight lines 𝑍1(𝑓) = 𝑓𝑥1

0 + 𝐶1
and 𝑍2(𝑓) = 𝑓𝑥2

0 + 𝐶2 have been drawn through 𝑃1 and 𝑃2 with slopes 𝑥1
0 and 𝑥2

0 and
𝑍(𝑓) intercepts of 𝐶1 and 𝐶2. Here 𝑥1

0 and 𝑥2
0 are the makespans of the first and second

schedules and 𝐶1 and 𝐶2 are the communication costs of the first and second schedules,
respectively. The following proposition is helpful.

Proposition 5.7. An upper boundary of the region of uncertainty of 𝑍∗(𝑓), termed
UB(𝑓), is determined by the lower envelope (pointwise minimum) of the (linear) functions
𝑓𝑥𝑟

0 + 𝐶𝑟 drawn through plotted points representing known feasible schedules, 𝑃1, … , 𝑃𝑠,
for 𝑟 = 1, … , 𝑠.
Proof. By Proposition 5.1. 2

Suppose that the plotted point (𝑓3,UB(𝑓3)) is represented by 𝑃4. Applying Propo-
sition 5.7 in Figure 5.2A, UB(𝑓) corresponds to the piecewise linear curve 𝑃1𝑃4𝑃2.

Proposition 5.8. A lower boundary of the region of uncertainty of 𝑍∗(𝑓), termed LB(𝑓),
is determined by the linear interpolation between the plotted points representing known
optimal schedules.
Proof. By Proposition 5.2. 2

Applying Proposition 5.8 in Figure 5.2A, LB(𝑓) corresponds to the straight line
𝑃1𝑃2. Combining Proposition 5.7 and 5.8, we obtain the shaded area in Figure 5.2A,
which represents the region of uncertainty of 𝑍∗(𝑓). Further lower bounds are sometimes
available through the use of approximation techniques such as Lagrangian Relaxation.

5.6 The PA Process 98

𝑓1 𝑓3 𝑓2

𝐶1

𝑍∗(𝑓1)

𝑍∗(𝑓3)

𝐶2

𝑍∗(𝑓2)

.
𝑃1

𝐿𝐵(𝑓)

.
𝑃2

𝑍2(𝑓).𝑃4

𝑍 1(
𝑓) .

𝑃5

.𝑃3

𝑓

𝑍(𝑓)

(A)

𝑓1 𝑓3 𝑓2

.
𝑃1

.
𝑃2

𝑍2(𝑓)

𝑍 1(
𝑓)

𝑍 3(𝑓
)

.𝑃6

.𝑃7

.𝑃3

.𝑃4

𝑓

𝑍(𝑓)

(B) Case (a)

𝑓1 𝑓3 𝑓2

.
𝑃1

𝑍 1(
𝑓)

.𝑃3 = 𝑃4 𝑍2(𝑓) .
𝑃2

𝑓

𝑍(𝑓)

(C) Case (b)

𝑓1 𝑓3 𝑓2

.
𝑃1

𝐿𝐵(𝑓)

.
𝑃2

.𝑃3 = 𝑃5

𝑓

𝑍(𝑓)

(D) Case (c)

Figure 5.2: (A) Evaluation of 𝑓1,𝑓2,𝑓3. (B) Case (a): 𝑃3 ≠ 𝑃4, 𝑃5.
The PA continues. (C) Case (b): 𝑃3 = 𝑃4. A breakpoint
at 𝑓3. (D) Case (c): 𝑃3 = 𝑃5. No breakpoint at 𝑓3.

5.6 The PA Process
Following [36], the PA process is based on combining Propositions 5.1 and 5.2.

Each iteration of the PA process analyses the feasible schedules corresponding to two
different values of 𝑓 , being 𝑓1 and 𝑓2, where 0 ≤ 𝑓1 < 𝑓2 ≤ 𝑓 ′ and a further optimal
schedule corresponding to an intermediate value of 𝑓=𝑓3. Next, we show how to compute
𝑓3 from 𝑍(𝑓1) and 𝑍(𝑓2), with 𝑓1 ≤ 𝑓3 ≤ 𝑓2.

The values to start the process are 𝑓1 = 0 and 𝑓2 = 𝑓 ′. The PA process is applied
to attempt to reduce the area of uncertainty (shaded area in Figure 5.2A) by solving the SM
instance exactly at an intermediate value 𝑓=𝑓3. To reduce the area by the largest possible
amount, 𝑓3 should be chosen to coincide with Max𝑓 (UB(𝑓) – LB(𝑓)) [36]. The value
UB(𝑓) can be computed as the intersection of 𝑍1(𝑓) and 𝑍2(𝑓), which is represented by
𝑃4 in Figure 5.2A. Solving for 𝑓3 we have:

𝑓3𝑥1
0 + 𝐶1 = 𝑓3𝑥2

0 + 𝐶2,

𝑓3 = 𝐶2–𝐶1
𝑥1

0–𝑥2
0

, (5-4)

where 𝑥1
0 > 𝑥2

0 and 𝐶2 > 𝐶1.

5.6 The PA Process 99

The resulting point 𝑃3 = (𝑓3, 𝑍∗(𝑓3)) is plotted in Figure 5.2A, with LB(𝑓3) ≤
𝑍∗(𝑓3) ≤ UB(𝑓3), and 𝑃3 lying on the line segment 𝑃4𝑃5. There are only three possible
cases for the position of 𝑃3 in 𝑃4𝑃5: (a) 𝑃3 is strictly between 𝑃4 and 𝑃5, (b) 𝑃3 = 𝑃4, or (c)
𝑃3 = 𝑃5. Cases (a), (b) and (c) are depicted in Figures 5.2B, 5.2C, and 5.2D, respectively,
and are discussed next.

For case (a), when 𝑃3 is strictly between 𝑃4 and 𝑃5, as shown in Figure 5.2B, the
straight line 𝑍3(𝑓) = 𝑓𝑥3

0 + 𝐶3 has been drawn through 𝑃3 with slope 𝑥3
0 and with 𝑍(𝑓)

intercept 𝐶3, where 𝑥3
0 is the makespan of the optimal schedule for 𝑓=𝑓3 and 𝐶3 is its

communication cost. Suppose that this line 𝑓𝑥3
0 + 𝐶3 intersects 𝑃1𝑃4 (𝑃4𝑃2) at point 𝑃6

(𝑃7), as shown. Then, by Proposition 5.7, 𝑍∗(𝑓) ≤ 𝑍3(𝑓) and the triangle 𝑃6𝑃4𝑃7 can
be eliminated from the area of uncertainty for 𝑍∗(𝑓). Consequently, this area is reduced
to the quadrilateral 𝑃1𝑃6𝑃7𝑃2. Furthermore, through Proposition 5.8, the straight lines
𝑃1𝑃3 and 𝑃3𝑃2 constitute lower bounds on 𝑍∗(𝑓). This implies that the triangle 𝑃1𝑃3𝑃2
can be eliminated from the area of uncertainty for 𝑍∗(𝑓). This means that this area is
reduced to the two triangles 𝑃1𝑃6𝑃3 and 𝑃3𝑃7𝑃2. Thus, the plotted function 𝑍∗(𝑓) passes
through 𝑃1 with slope 𝑥1

0, through 𝑃3 with slope 𝑥3
0 and through 𝑃2 with slope 𝑥2

0. It
remains to determine the behavior of 𝑍∗(𝑓) in the triangles 𝑃1𝑃6𝑃3 and 𝑃3𝑃7𝑃3. This
can be performed by recursively applying the PA process to these two triangles.

For case (b), when 𝑃3 = 𝑃4, as shown in Figure 5.2C, the area of uncertainty
delimited by triangle 𝑃1𝑃4𝑃2 can be eliminated. There is a breakpoint at 𝑓=𝑓3, and for
𝑓1 ≤ 𝑓 ≤ 𝑓2, 𝑍∗(𝑓) can be plotted as the piecewise linear segments 𝑃1𝑃4 and 𝑃4𝑃2.

For case (c), when 𝑃3 = 𝑃5, as shown in Figure 5.2D, the area of uncertainty
delimited by triangle 𝑃1𝑃4𝑃2 can be eliminated. There is no breakpoint at 𝑓=𝑓3, and for
𝑓1 ≤ 𝑓 ≤ 𝑓2, 𝑍∗(𝑓) can be plotted as the piecewise linear segment 𝑃1𝑃2.

Due to Proposition 5.5, there is a finite set of breakpoints. Furthermore, the
proposition below can be used to obviate the need to find an optimal schedule for certain
𝑓 values.

Proposition 5.9. Suppose that feasible schedules have been found for 𝑓 values 𝑓𝑡 and
𝑓𝑡+1, with makespans 𝑥𝑡

0 and 𝑥𝑡+1
0 , respectively, differing by unity, for some nonnegative

integer 𝑡. Then there is exactly one breakpoint in [𝑓𝑡, 𝑓𝑡+1].

Proof. Due to the fact that the 𝑤𝑗’s are assumed to be integers and because of Proposi-
tions 5.4 and 5.6. 2

In practice, the PA converges quite quickly to the entire set of breakpoints. To
further aid the understanding of the process, we illustrated it via the numerical example
presented in the next section.

5.7 A Numerical Example of PA 100

5.7 A Numerical Example of PA
The following example illustrates the PA process applied to a non-trivial SM

instance (𝑀𝑝𝑎), which is a modified version of a practical multiway spatial join query
instance, with integer 𝑤𝑗’s and 𝑐𝑖𝑗’s, 𝑛 = 69, 𝑚 = 16, and 𝑢𝑖 = 0, 𝑖 = 1, … , 16. We
modified the values of the processing and communication costs to improve the illustration
of the process. The instance is presented in Appendix B for reference and the 𝑍∗(𝑓)
function produced by applying the PA process is illustrated in Figure 5.1.

The UB of the makespan 𝑥𝑈𝐵
0 is obtained by setting 𝑓=0 and solving SM0 to

identify the feasible schedule. The schedule can be generated by greedily assigning each
job to its lowest cost processor. The result is a feasible schedule with makespan 𝑥𝑈𝐵

0 = 35
and communication cost 7152. Using (5-1), we identify the lowest possible makespan in
any feasible schedule, 𝑥𝐿𝐵

0 :

𝑥𝐿𝐵
0 =

⌈
∑𝑛

𝑗=1 𝑤𝑗
𝑚 ⌉

= ⌈
362
16 ⌉ = 23.

We first solve the instances SM𝑞 for 𝑞 = 0, 1, 2, that is, for 𝑥0 = 23, 24, 25. The
first feasible schedule occurs for 𝑞1 = 0, with (𝑍∗, 𝑥∗

0, 𝐶∗) = (8597, 23, 7470), i.e., a total
cost of 8597, a makespan of 𝑥0 = 𝑥𝐿𝐵

0 = 23, and a communication cost of 7470.
The second feasible schedule occurs for 𝑞2 = 2, with (𝑍∗, 𝑥∗

0, 𝐶∗) = (8597, 25,
7372), a total cost of 8597, a makespan of 𝑥0 = 𝑥𝐿𝐵

0 + 2 = 25 and a communication cost
of 𝑍𝑞(2) = 7372. There is no feasible schedule for 𝑞 = 1, with makespan 𝑥0 = 24.

Using (5-3), we have that:

𝑓 ′ =
𝑍𝑞(𝑞1)–𝑍𝑞(𝑞2)

𝑞2–𝑞1
= 7470 − 7372

2 − 0 = 49.

Therefore, the feasible schedule with 𝑥0 = 23, communication cost 7470 and total
cost 23𝑓 + 7470 is optimal for all 𝑓≥49. So, 𝑓 ′ is fixed at 49. As 𝑥𝐿𝐵

0 = 23 < 35 = 𝑥𝑈𝐵
0 ,

the proposed PA process is now applied within the range 0 ≤ 𝑓 ≤ 49. The challenge is
to find the optimal schedules, its total cost 𝑍∗(𝑓), its makespan and communication cost,
for each piecewise segment in this range.

For short, let us denote as (𝑍∗(𝑓𝑖), 𝑥𝑖
0, 𝐶𝑖) the values for a feasible schedule

obtained for 𝑓𝑖, where 𝑖 indicates the sequence of 𝑓 values investigated in the course of
PA process. For example, for the first 𝑓 below, we have 𝑓1 = (7152, 35, 7152).

Recall that for each iteration of the PA process we start with feasible schedules for
two values of 𝑓 and compute a further optimal schedule corresponding to an intermediate
value of 𝑓 . The results for the first iteration is presented in the following table. We already
have two schedules corresponding to 𝑓1 = 0 and 𝑓2 = 49, with the values in the second

5.7 A Numerical Example of PA 101

column, for which we define the two points in the (third column). The initial interval
of uncertainty for 𝑍∗(𝑓) is the triangle 𝑃1𝑃4𝑃2, plotted in Figure 5.3A. By applying
Proposition (5.7) we obtain UB(𝑓). LB(𝑓) is obtained by applying Proposition (5.8).
The intermediate value of 𝑓 (column interm. 𝑓) is obtained using (5-4), and finally, by
computing the optimal schedule for it, we can determine the case of the PA to be applied.

𝑓 (𝑍∗(𝑓𝑖), 𝑥𝑖
0, 𝐶𝑖) 𝑃 = (𝑓𝑖, 𝑍∗(𝑓𝑖)) UB(𝑓) LB(𝑓) interm. 𝑓

𝑓1 = 0 (7152, 35, 7152) 𝑃1(0, 7152) 35𝑓 + 7152 29.49𝑓 + 7152 𝑓3 = 22𝑓2 = 49 (8597, 25, 7372) 𝑃2(49, 8597) 25𝑓 + 7372

The optimal schedule for 𝑓3, presented in the following table, provides a point
𝑃3 = (22, 7870) strictly between 𝑃4 and 𝑃5 (Figure 5.3A), which identifies a case (a). Thus,
by applying Propositions (5.7) and (5.8), we define new upper and lower bounds to reduce
the area of uncertainty for 𝑍∗(𝑓), as illustrated in Figure 5.3B. The intervals of uncertainty
of 𝑍∗(𝑓) are now the triangles 𝑃1𝑃6𝑃3 (Figure 5.3C) and 𝑃3𝑃7𝑃2 (Figure 5.3D).

𝑓 (𝑍∗(𝑓𝑖), 𝑥𝑖
0, 𝐶𝑖) 𝑃 = (𝑓𝑖, 𝑍∗(𝑓𝑖)) UB(𝑓) LB(𝑓)

𝑓3 = 22 (7870, 32, 7166) 𝑃3(22, 7870) 32𝑓 + 7166 𝑃1𝑃3: 32.64𝑓 + 7152
𝑃3𝑃2: 26.92𝑓 + 7744

The PA process continues recursively in the triangles 𝑃1𝑃6𝑃3 and 𝑃3𝑃7𝑃2 until a
case (b) occurs and identifies a breakpoint, or a case (c) occurs which implies there is no

𝑓1=0 𝑓3 = 22 𝑓2 = 49
7152

8597

.𝑃1

29.49𝑓 + 7152

.𝑃225𝑓 + 7372.𝑃4

35𝑓
+ 715

2

.𝑃3.
𝑃5

𝑓

𝑍(𝑓)

(A)

𝑓1=0 𝑓3 = 22 𝑓2 = 49

7166
7870

8597

.𝑃1 32.64𝑓 + 7152

.
𝑃3

26.92𝑓 + 7744
.𝑃2.𝑃7

32𝑓 + 7166

.𝑃6

.𝑃4

𝑓

𝑍(𝑓)

(B)

𝑓1 = 0 𝑓4 = 14/3 𝑓3 = 22
7152

7870

.𝑃1

32.64𝑓 + 7152

.𝑃332𝑓 + 7166.𝑃6

35𝑓
+ 715

2 .𝑃8

𝑓

𝑍(𝑓)

(C)

𝑓3 = 22 𝑓5 = 29 𝑓2 = 49

7870

8597

.𝑃3

26.92𝑓 + 7744

.𝑃225𝑓 + 7372.𝑃7

32𝑓
+ 716

6 .𝑃9

𝑓

𝑍(𝑓)

(D)

Figure 5.3: First iteration of the PA for 𝑀𝑝𝑎.

5.8 Upper Bound of 𝑍∗(𝑓) Using Approximate Schedules 102

breakpoint in the particular range of 𝑓 at hand. For the sake of brevity, the other iterations
for this PA are presented in Appendix B.

We found optimal schedules for nine values of 𝑓 , as indicated in Table B.1. This
produced a complete PA of 𝑓 for 𝑀𝑝𝑎. There are six breakpoints: 𝑓=4, 5, 24, 29, 31, and
49. At each of these breakpoints, there are two distinct optimal schedules. The results are
summarized in Table 5.3, and 𝑍∗(𝑓) is presented in Figure 5.1.

From Table 5.3, it can be seen that it is possible to reduce the makespan of 𝑀𝑝𝑎 by
34.3% (from 35 to 23), with a corresponding increase of 4.4% in the communication costs
(from 7152 to 7470). The last improvement of the makespan occurs for 𝑓=49. No value
of 𝑓>49 can further improve it. Furthermore, the communication cost increases smoothly
in the first segments and then jumps after the fifth segment (29 ≤ 𝑓 ≤ 31).

Table 5.2: The 𝑓 ’s examined in the parametric analysis of 𝑀𝑝𝑎.

Breakpoint? 𝑓 𝑍∗(𝑓) 𝑥∗
0 𝐶∗ 𝑥∗

0 𝐶∗

No 0 7152 35 7152 - -
Yes 4 7292 35 7152 34 7156
No 14/3 7314.67 34 7156 - -
Yes 5 7326 34 7156 32 7166
No 22 7870 32 7166 - -
Yes 24 7934 32 7166 31 7190
Yes 29 8089 31 7190 29 7248
Yes 31 8147 29 7248 25 7372
Yes 49 8597 25 7372 23 7470

Table 5.3: A summary of the parametric analysis of f for 𝑀𝑝𝑎.

Range of 𝑓 𝑥∗
0 𝐶(𝑓) 𝑍∗(𝑓) Range of 𝑍∗(𝑓)

0 ≤ 𝑓 ≤ 4 35 7152 35𝑓 + 7152 7152 ≤ 𝑍∗(𝑓) ≤ 7292
4 ≤ 𝑓 ≤ 5 34 7156 34𝑓 + 7156 7292 ≤ 𝑍∗(𝑓) ≤ 7326
5 ≤ 𝑓 ≤ 24 32 7166 32𝑓 + 7166 7326 ≤ 𝑍∗(𝑓) ≤ 7934
24 ≤ 𝑓 ≤ 29 31 7190 31𝑓 + 7190 7934 ≤ 𝑍∗(𝑓) ≤ 8089
29 ≤ 𝑓 ≤ 31 29 7248 29𝑓 + 7248 8089 ≤ 𝑍∗(𝑓) ≤ 8147
31 ≤ 𝑓 ≤ 49 25 7372 25𝑓 + 7372 8147 ≤ 𝑍∗(𝑓) ≤ 8597
49 ≤ 𝑓 23 7470 23𝑓 + 7470 8597 ≤ 𝑍∗(𝑓)

5.8 Upper Bound of 𝑍∗(𝑓) Using Approximate Schedules
When optimal schedules are unavailable or are difficult to find, approximate

schedules to SM, such as the ones provided by the method based on Lagrangian Relaxation
(LR) given in Chapter 4, can be used instead to obtain upper bounds for 𝑍∗(𝑓). In this
section, we discuss how to calculate those upper bounds and discuss certain limitations of
the process.

5.8 Upper Bound of 𝑍∗(𝑓) Using Approximate Schedules 103

A sequence of upper bounds on the region of uncertainty of 𝑍 ∗ (𝑓) can be
deduced by following a modified PA process that is limited to UB identification, rather
than finding exact schedules. We apply Proposition 5.7 on the initial range for 𝑓 , and
next compute the intermediate values of 𝑓 by (5-4). For each intermediate value of 𝑓 ,
instead of getting an optimal schedule, we compute a schedule by an approximate method.
The process is repeated in the same way as the original PA process but with a limitation
described next. This procedure does not necessarily lead to a complete PA. For instance,
it cannot provide the segments of 𝑍∗(𝑓). However, it may still produce valuable, partial
results.

The mentioned limitation in the process occurs when considering the resulting
point for the schedule of an intermediate value 𝑓3 to decide which case is pertinent in
order to continue the PA process. By using optimal schedules, only the three mentioned
cases (a), (b), or (c) in Figure 5.2 can occur. By using approximate schedules, however, a
fourth case may occur, for which the point defined by the approximate schedule appears
above UB(𝑓), that is, the quality of the schedule is relatively bad considering the partial
UB already defined. In this situation, the procedure cannot further refine the upper bound
in the respective range of 𝑓 .

We present in Figure 5.4 a computational experience gained by using this pro-
cedure in 𝑀𝑝𝑎. We plotted in Figure 5.4A both the original shape of 𝑍∗(𝑓) given by the
complete PA process and the UB defined by the approximate schedules. The difference is
almost imperceptible for some ranges of 𝑓 , indicating that the UB is close to 𝑍∗(𝑓). We
draw the highlighted region in (B). The point 𝑃 is the value of the approximate schedule
for 𝑓=22 (7928, 25, 7378), for which the fourth case mentioned occurs. The dotted line
is the given upper bound defined by this schedule, and it is outside the region already
defined. The method cannot improve further the UB in this region.

0 10 20 30 40

7500

8000

8500

B

𝑓

𝑍
∗ (𝑓

)

A
𝑍∗(𝑓)
UB

20 21 22 23 24

7850

7900

7950 .𝑃
gap

𝑓

B

Figure 5.4: Shape of 𝑍∗(𝑓) for 𝑀𝑝𝑎 and the upper bound defined
using approximate schedules. (B) is the zoomed region
highlighted in (A), with the point 𝑃 of the approximate
schedule and its gap.

5.9 Final Considerations 104

We also computed the segments of 𝑍∗(𝑓) and the UB for the practical SM
instance 𝐽3. We choose 𝐽3 because it presented the largest GAP for 𝑚 = 4 in the
experiments in the previous chapter. Further, for 𝑚 = 4 we can quickly compute the
complete segments of 𝐽3. The range for PA in this instance was 0 ≤ 𝑓 ≤ 3.62, and it
presented 72 segments. The result is depicted in Figure 5.5. As we can see, the UB is
very close to 𝑍∗(𝑓) in (A), and the difference is visually imperceptible. There is a dense
region of segments between 𝑓=0 and 𝑓=1.7, indicated by the markers. We zoomed in on
the highlighted regions in (B) and (C). These are the regions with the largest difference
between UB and 𝑍∗(𝑓).

We can conclude from this experiment that the defined UB is very close to 𝑍∗(𝑓).
This result is due to the small gaps provided by the LR method. Thus, in scenarios where
optimal schedules are unavailable or are difficult to find, the UB can be used to answer
the practical questions previouslymentionedwith reasonable precision, provided that good
approximate schedules exist.

0 1 2 3

1

2

⋅108

B
C

𝑓

𝑍
∗ (𝑓

)

A
𝑍∗(𝑓)
UB

0.66 0.68 0.7 0.72

6.6

6.8

7

7.2 ⋅107

𝑓

B

1.2 1.25 1.3 1.35 1.4

1.1

1.15

⋅108

𝑓

C

Figure 5.5: Shape of 𝑍∗(𝑓) for 𝐽3 with 𝑚 = 4 and the upper bound
defined using approximate schedules. (B) and (C) are
the zoomed regions highlighted in (A).

5.9 Final Considerations
In this chapter, we investigated a method to control the scheduling behavior

concerning the usage of computational resources, i.e., processing power and network
capacity, by using the parameter 𝑓 introduced for SM in Chapter 4. We proposed a
method based on the post-optimality theory of integer linear programming, which can
identify a range of 𝑓 and all the segments for which distinct schedules for an instance
of SM is produced. This method can provide answers to practical questions that arise
when scheduling queries using the SM model and identify a value of 𝑓 depending on the
constraints of processing power and network costs imposed in a system.

5.9 Final Considerations 105

Furthermore, in scenarios where optimal schedules are unavailable or difficult
to find, we introduced a method that can use approximate schedules to define an upper
bound on the value of 𝑍∗(𝑓), termed UB(𝑓). The method can also be used to answer the
practical questions previously mentioned with reasonable precision, provided that good
approximate schedules exist, such as the ones provided by the LR method (Chapter 4).

In the next chapter, we introduce the last two missing pieces of the distributed
multiway spatial query optimizer, namely, the method for selection of plans and the
specifications of an execution engine that can perform the selected execution plan for a
query, respecting the defined schedule for it.

CHAPTER 6
Selection and Execution of Multiway Spatial
Join Query Plans

In this chapter, we introduce the methods for the query optimizer proposed in this
thesis and present a query execution engine that can execute multiway spatial join queries
following the schedules provided by the optimizer.

We recall from previous chapters that a query optimizer performs the optimiza-
tion of a query in a sequence of steps. First, the optimizer enumerates the set of equivalent
plans for the query (plan enumeration) and next it analyses each of the enumerated plans
to estimate the cost of processing the plan, with regard to the specified order determined
by the plan and using the cost model (Chapter 3). During the cost estimation, a schedule
is generated by determining some of the costs in a distributed environment (Chapter 4
and 5). Finally, the optimizer selects a plan to execute the query, based on the final cost
of each estimated plan. This last step is covered in the present chapter.

The chapter is organized as follows. We introduce the query selection method
in Section 6.1, and next, we present the query execution engine used in the experiments
(Section 6.2). The evaluation of these two components is presented in Section 6.3. In the
evaluation, we return to some properties of the cost model, that are dependent on the
query scheduling method. One of these properties is the precision of the estimates of the
communication cost (Section 6.3.1). The evaluation by the query optimizer, with regard
to the selection of good execution plans, is presented in Section 6.3.2, followed by the
analysis of the resource consumption in real query execution (Sections 6.3.3 and 6.3.4).
The scalability of the query execution engine is evaluated in Section 6.3.5), and finally,
we present our conclusions and final considerations in Section 6.4.

6.1 Selection of Distributed Execution Plans
In this section, we propose a method for plan selection. We recall from Chapter 2

that the evaluation of the predicate of a spatial query uses CPU intensive algorithms from
Computational Geometry as part of the identification of the result set. Often, the objective

6.1 Selection of Distributed Execution Plans 107

of processing a query in a distributed system is to achieve a short execution time, by
sharing the load evenly among the computing resources. In the plan scheduling method,
we pursued this objective by scheduling the steps of each plan in a way that minimizes the
weighted sum of the makespan and the communication costs. The weight, defined by the 𝑓
parameter, was used to choose between makespan minimization or a compromise between
the makespan and the communication cost. However, each plan step has a particular range
of 𝑓 , and thus, a single value for 𝑓 is not adequate for all steps of the plan. Due to this, we
define a new weight for the entire query, called 𝑓 𝑞, 0 ≤ 𝑓 𝑞 ≤ 1. Based on the value of 𝑓 𝑞,
we can define the particular value of 𝑓 for each step, observing the range 0 ≤ 𝑓 ≤ 𝑓 ′,
as defined in Chapter 5. For example, 𝑓 𝑞 = 1 implies that the maximum 𝑓 value for each
step should be used when scheduling the plan.

To select a plan, we start with the array plan_cost returned by the procedure
Estimate-Plan-Cost (Algorithm 3.5). It contains both the aggregated load for each
machine, the steps of a query and the aggregated communication cost. We apply the same
reasoning of the objective function 𝑍𝐹 𝑀 (FM.1), in the sense that we weight the final
makespan for the plan by 𝑓 𝑞 and sum it with the total communication cost. We illustrate
it formally in Algorithm 6.1.

It is worth noting that many equivalent query steps arise during the enumeration
of plans, i.e., steps that estimate the same sub-query, with the same datasets or intermediate
results, and in the same order. Obviously, these steps do not require to be repeatedly
estimated, provided that dynamic programming or memoization can identify them in the
plan enumeration procedure. As the plan enumeration is outside the scope of this thesis,
we do not discuss this identification step here and consider this process as a single loop
within the planning procedure. In a practical implementation, however, this integration
between the plan enumeration and the plan selection methods should be implemented.

The procedure Select-Plan, in Algorithm 6.1, illustrates how to select a plan for
a query, by calling the previously-proposed methods. The procedure starts with the set of
plans 𝑃 for the query 𝑄 (line 1) and iterating over each plan 𝑃𝑘 ∈ 𝑃 (line 2) to compute
its makespan 𝑃 𝑥𝑜

𝑘 (line 4), communication cost 𝑃 𝐶
𝑘 (line 5), and its overall weighted cost

𝑃 𝑍
𝑘 . Finally, the best plan is selected by taking the plan with minimum 𝑃 𝑍

𝑘 (line 7). The
procedure Aggregate-Costs, called by Estimate-Plan-Cost, returns the load field of
the plan_cost array already weighted by the value of 𝑓 for each step. Also, the function
stepf used inside Estimate-Plan-Cost is defined by (6-1).

stepf (𝑓 𝑞) = 𝑓 ′ ∗ 𝑓 𝑞 (6-1)

6.2 Query Execution Engine 108

Algorithm 6.1: Procedure Select-Plan to select a plan to execute a query 𝑄.
Select-Plan(𝑄, 𝑓 𝑞)
1 𝑃 = Enumerate-Plans(Q)
2 for each 𝑃𝑘 ∈ 𝑃
3 Estimate-Plan-Cost(𝑃𝑘, 𝑓 𝑞, plan_cost)
4 𝑃 𝑥0

𝑘 = max𝑚
𝑖=1(plan_cost .load [𝑖])

5 𝑃 𝐶
𝑘 = ∑𝑚

𝑖=1 plan_cost .comm[𝑖]
6 𝑃 𝑍

𝑘 = 𝑃 𝑥0
𝑘 + 𝑃 𝐶

𝑘
7 return argmin𝑃𝑘∈𝑃 (𝑃 𝑍

𝑘)

6.2 Query Execution Engine
In this section, we present the execution engine used to perform the multiway

spatial join queries and some details of our implementation. The components of the
execution engine and its capabilities are described as follows. There are three components:
the client, the controller, and the worker modules, as illustrated in Figure 6.1.

The Client Module (see Figure 6.1) provides the API (Application Programming
Interface) to load datasets into the system and to execute multiway spatial join queries. It is
composed of the Data and Query parsers. TheData parser sub-module loads the data files
in their respective formats, and computes the necessary metadata information, required by
the Split method (Chapter 3, Section 3.2), such as the dataset spatial extent and the average
length of all objects. TheQuery parser is the sub-module responsible for parsing the query
received in a string format and producing a query graph from the input that will be used
inside the Controller module, to optimize the query.

The Controller Module (see Figure 6.1) controls the data loading process and
performs the query optimization and execution. It maintains the context of the system,
which includes information about the queries and jobs to detect the progress of the
execution. It also maintains a cache of the metadata required for the data partitions
loaded in the system. The Query Optimizer sub-module implements the plan enumeration
algorithm, the plan scheduling method (Chapters 4 and 5), the plan selection (Section 6.1),
and the algorithms related to the cost model (Chapter 3). The Data partitioner sub-module
receives the spatial objects from the Client module, forms the data partitions, and performs
the data distribution. The Query Controller sub-module interfaces with all parts of the
system and performs the query execution.

The Worker Module (see Figure 6.1) stores the data partitions loaded into the
system and their metadata and also performs the execution of jobs over these partitions.
An instance of the worker module exists on each machine of the cluster and knows about
the existence of the others worker instances in the network. When executing query jobs,

6.2 Query Execution Engine 109

Client Module

Data parser

Query parser

Controller Module
Data

controller

Query
optimizer

Query
controller

Metadata
Cache

System
Context

Worker Module: 1

Job Runner Data copier

Metadata Data Partitions

…

Worker Module: 𝑚

Job Runner Data copier

Metadata Data Partitions

Figure 6.1: Modules of the execution engine and their interactions.

the Data copier of an instance may possibly ask other instances for missing data partitions
in the local repository that are necessary to execute a query job, including intermediate
data partitions, generated while executing a query.

The Worker Module also exploits intra-machine parallelism, i.e., it runs on
machines with multiple processors or cores, using threads and shared memory. Besides the
distributed partitioning of a query, each query job can be processed in parallel (internally
within each machine). This division is simpler than the distributed division, due to use of
shared memory. Another important task that is performed (in parallel with the predicate
checking) is the copying of data partitions from other workers by the Data copier sub-
module.

The processing of query jobs by the Worker Module is illustrated in Figure 6.2.
The jobs are received from the Controller module and stored in the Receive queue. A
Classifier uses the local metadata to classify the job into three categories: 𝑖) ready to
execute, meaning that all data required to execute the job is locally available; 𝑖𝑖) waiting
for remote data, i.e., to perform the job, one or more data partitions require to be copied
from other workers; and 𝑖𝑖𝑖) waiting for local data to be available, i.e., the job requires an
intermediate partition that will be generated at the current node, but still is not available.

The ready jobs are directly transferred to the Execute queue, where the predicate
is performed, and the intermediate result set is generated. Jobs that require additional
data are moved to the Wait queue. When the data required becomes available, the job
is transferred to the Execute queue. To prevent high memory consumption, the sizes of
these queues are defined as parameters of the system, and should be defined with regard
to the network capacity, i.e., faster networks should require smaller queues and vice-versa.

The wait queue is a fundamental component of the system as it prevents network
contention. In other words, as the scheduling of a query considers the local availability of
data to define where each job will be executed, there will be a set of jobs for a query that
can be executed without passing through the Wait queue. The other jobs that require local
or remote data will pass through the Wait queue. The Data copier sub-module can handle

6.3 Evaluation 110

Receive queue
Classifier

Wait queue Execute queue
...

unclassified job waiting remote data waiting local data ready finished

Figure 6.2: The flow of jobs inside the Worker module.

the jobs waiting for remote data by copying the remote partitions in parallel, while the CPU
continues to process the jobs in the Execute queue. As the predicate is a complex algorithm,
the execution queue is expected to have jobs to deal with almost all the time, keeping the
machine processors busy. We shall study this behavior in the Evaluation section, given
next. In our implementation, we created one wait queue for each machine that is contacted,
and the system can copy data partitions from all other machines at the same time.

To implement those described modules, we used two programming languages: C
and Go1. The C language was used to code low-level algorithms that interface with the
GDAL2 library to load datasets files in ESRI Shapefile (.shp), ESRI FileGDB (.gdb) and
GeoJSON formats (Data parser module) and with GEOS3 library to process spatial predi-
cates in the Job Runner module. The interoperability of C and Go code was implemented
using the native CGO extension.

The Go language was used in the distributed part of the system to implement
the communication protocols and the parallel join processing on the Worker node. All
queues are implemented using the mechanism of channels provided by the language. The
communication protocols used to provide the interaction between the modules runs over
TCP sockets, and the serialization of data structures was implemented using the GOB
package of the Go language.

6.3 Evaluation
This section presents the evaluation of the proposed query optimizer. The ex-

periments were performed on the Amazon EC2 Platform, using virtual machines of type
m4.xlarge4. Each machine has four vCPUs of type Intel(R) Xeon(R) CPU, E5-2686 v4
model, running at 2.30GHz, and with 16GB of RAM. The machines were allocated to
the same data center, interconnected by a virtual network. A machine can utilize up to 10
Gbps for single-flow and 20 Gbps for multi-flow traffic in each direction (full duplex). The

1http://golang.org
2http://www.gdal.org
3https://trac.osgeo.org/geos/
4These machines are distinct from those used in previous chapters due to constraints in our quota in the

cloud environment. However, the total amount of memory is sufficiently large to run all queries in memory.

6.3 Evaluation 111

operating system used was the default Ubuntu Server 16.04 LTS offered by the provider
through an AMI image.

We focused on the evaluation of multiway spatial joins, by using the queries 𝑀1..6
defined in Chapter 4, and extending this set with two larger queries: 𝑀7, that is a multiway
join between larger datasets, and 𝑀8, that uses more datasets and has more steps. The
additional datasets are presented in Table 6.1. The three datasets prefixed with “Tiger” are
from the TIGER 2016 spatial database5. Their size ranges from 101 MB to 4.8 GB, and
they represent spatial layers in the USA. The other datasets are from the Digital Chart of
the World (DCW) and represent polygons of worldwide land coverage. The size column
in the table displays the original binary representation of the data: ESRI FileGDB Format
for Tiger datasets and Shapefile format for the others. When loaded into the system, the
datasets occupy more than three times the space indicated, increasing the required main
memory to store the spatial objects, as well as the required network bandwidth to copy
data partitions.

Table 6.2 presents all queries used, showing their number of steps, number of
plans, and join cardinality. The plan for a query is denoted in the experiment results using
the format 𝑀𝑝1

1 , where 𝑝1 is the first plan for query 𝑀1.

Table 6.1: Additional datasets used in the experiments.
Name Abrev. Type Cardinality File Size
Tiger Block TBL Polygons 11,278,412 4.8 GB
Tiger Area Water TAW Polygons 2,293,342 823.0 MB
Tiger School TSC Polygons 10,896 101.0 MB
Tundra TU Polygons 37,792 26.5 MB
Lakes LA Polygons 338,819 130.3 MB
Grass GR Polygons 145,605 87.7 MB
Trees TR Polygons 167,392 95.7 MB
Sand SA Polygons 18,866 22.9 MB
City Areas CA Polygons 36,432 12.8 MB

Table 6.2: Multiway spatial join queries used in the experiments.

Name Query Steps Plans Join Card.
𝑀1 A ⋈ RI ⋈ RA ⋈ CR 3 6 104
𝑀2 RI ⋈ RA ⋈ EC 2 2 46,235
𝑀3 RI ⋈ HI ⋈ RA 2 2 16,285
𝑀4 R ⋈ RI ⋈ RA ⋈ EC 3 6 2,254
𝑀5 A ⋈ HI ⋈ CR ⋈ C 3 6 5,308
𝑀6 RI ⋈ EC ⋈ HI ⋈ RA 3 6 9,557
𝑀7 TAW ⋈ TSC ⋈ TBL 2 2 4,398,772
𝑀8 RU ⋈ LA ⋈ GR ⋈ TR ⋈ RA ⋈ SA ⋈ CA 6 720 8,420

5http://www.census.gov/geo/maps-data/data/tiger-geodatabases.html

6.3 Evaluation 112

We used the LR method (Chapter 4) to build the schedules for the queries and
𝑓 𝑞=0.5. Some experiments used different values of 𝑓 𝑞 and also other scheduling methods.
We indicate in each subsection when this occurs.

6.3.1 Evaluation of the Communication Cost Estimate
After the scheduling of a query plan, we know which partitions will be copied

during the plan execution, and we can estimate the incurred cost by using the cost model
proposed in Chapter 3. The experiment presented here compares the estimated and real
communication costs, for each query and plan. The real communication cost was measured
in the network interface. The purpose of the experiment is to check if the estimated
communication cost computed via the cost model for the intermediate steps supports the
identification of plans with a lower communication cost. For the first step of a plan, as
discussed in Chapter 3, we have the exact size of the partitions in the histograms.

We planned and executed each query plan using the Lagrangian Relaxation
method (Chapter 4, Section 4.7), for eight machines (𝑚 = 8). To convert the commu-
nication cost to bytes, we multiplied the given number of points by 32 (two double float
points). As the serialization protocol creates a kind of compression6, we expect the com-
munication cost to be overestimated. However, as it will be overestimated for all plans, we
still can identify the ordering of plans.

The results are shown in Figure 6.3. We plotted the values as a line chart to
facilitate the comparison of the contour lines for estimated and real values. The markers
determine the communication cost for each plan. The total communication cost for each
plan of 𝑀1 to 𝑀6 can be seen in (A), which ranges from 64.4 MB (𝑀𝑝5

1) to 2.4 GB
(𝑀𝑝3

6). The range of estimated values is 90.5 MB to 3.8 GB, for the same two query plans,
respectively. In (B) we depict the values for 𝑀7, and in (C) we present the values for all
720 plans of 𝑀8. By checking (A), (B), and (C), and the similarity of the contour line for
estimated and real values, it is evident that the method successfully identified the pattern
of the communication cost. As expected, the communication cost was overestimated for all
plans but, in general, the ordering of plans with respect to communication cost was mostly
preserved (some exceptions can be observed where the peak shown for the estimated value
does not follow the same amplitude of the real cost, e.g., around plan 𝑝200 and 𝑝500 in (C)).

Figure 6.4 presents the estimated communication cost per machine for queries
𝑀1 to 𝑀6. The error bars indicate the minimum and maximum communication cost
for a machine. The chart shows that the communication cost per machine was also well
estimated by the cost model, as the error amplitude in the estimated line follows the

6The encoding algorithm byte-reverses a float point value and ignores low bits. The details can be
checked in golang.org/pkg/encoding/gob/.

6.3 Evaluation 113

𝑀𝑝1
1 𝑀𝑝2

1 𝑀𝑝3
1 𝑀𝑝4

1 𝑀𝑝5
1 𝑀𝑝6

1 𝑀𝑝1
2 𝑀𝑝2

2 𝑀𝑝1
3 𝑀𝑝2

3 𝑀𝑝1
4 𝑀𝑝2

4 𝑀𝑝3
4 𝑀𝑝4

4 𝑀𝑝5
4 𝑀𝑝6

4 𝑀𝑝1
5 𝑀𝑝2

5 𝑀𝑝3
5 𝑀𝑝4

5 𝑀𝑝5
5 𝑀𝑝6

5 𝑀𝑝1
6 𝑀𝑝2

6 𝑀𝑝3
6 𝑀𝑝4

6 𝑀𝑝5
6 𝑀𝑝6

6

0

1

2

3

4
GB

A
Real

Estimated

𝑝1 𝑝2

10

20

30

𝑀7

GB
B

𝑝1 𝑝100 𝑝200 𝑝300 𝑝400 𝑝500 𝑝600 𝑝720

0

2

4

𝑀8

GB
C

Figure 6.3: Estimated and real communication costs of multiway
queries. (A) shows cost for 𝑀1..6, (B) for 𝑀7, and (C)
for 𝑀8.

𝑀𝑝1
1 𝑀𝑝2

1 𝑀𝑝3
1 𝑀𝑝4

1 𝑀𝑝5
1 𝑀𝑝6

1 𝑀𝑝1
2 𝑀𝑝2

2 𝑀𝑝1
3 𝑀𝑝2

3 𝑀𝑝1
4 𝑀𝑝2

4 𝑀𝑝3
4 𝑀𝑝4

4 𝑀𝑝5
4 𝑀𝑝6

4 𝑀𝑝1
5 𝑀𝑝2

5 𝑀𝑝3
5 𝑀𝑝4

5 𝑀𝑝5
5 𝑀𝑝6

5 𝑀𝑝1
6 𝑀𝑝2

6 𝑀𝑝3
6 𝑀𝑝4

6 𝑀𝑝5
6 𝑀𝑝6

6

0

0.2

0.4

GB

Real
Estimated

Figure 6.4: Average communication per machine and error bars
showing the minimum and maximum communication
costs of all machines for queries 𝑀1 to 𝑀6.

pattern of the amplitude for real values. Thus, we can conclude that the proposed cost
model provided an estimate of the total and per machine network communication cost that
followed the pattern of the real data transfer measured when running the query plans on
the execution engine, enabling the distinction between plans with high and low network
usage.

6.3.2 Evaluation of the Selection of Distributed Execution Plans
In this section, we present the evaluation of the plan selection method introduced

in Section 6.1. The experiment consisted of selecting an execution plan using the plan

6.3 Evaluation 114

selection method and then measuring the actual execution time of all plans in the cluster.
The purpose of this was to check whether the selected plan (based on the estimates) was
indeed the plan with the shortest execution time and smallest communication cost. We
also verified whether or not the values of 𝑃 𝑍

𝑘 for each query established an ordering of the
execution plans equivalent to the ordering of plans based on real execution time.

Figure 6.5 (A) shows the estimated cost of all plans for queries 𝑀1 to 𝑀7. Each
bar indicates the value 𝑃 𝑍

𝑘 for the plan 𝑃𝑘. The lowest bar in each group indicates the plan
with the smallest 𝑃 𝑍

𝑘 , i.e., the plan selected by the optimizer. The measured execution time
of each plan is presented in (B). The chart uses a logarithmic scale due to the difference
between the execution times of the best plan (in the order of seconds) and the worst plan
(in hundreds of seconds). The chart shows that the selected plan was indeed the best one
for six of the seven queries. 𝑀5 is the only query for which the selected plan (𝑝4) was not
the best one (𝑝5), but both are very similar plans with regard to execution time (0.3s ×
0.4s). Furthermore, the plan selection method was able to establish a consistent relative
ordering of all plans for almost all queries. The only two differences in the ordering are
𝑀𝑝4

5 and 𝑀𝑝5
5 , which appear in inverse order between estimated and real execution, and

𝑀𝑝2
6 - 𝑀𝑝4

6 which also are similar plans.
The evaluation of query 𝑀8 is depicted in a separate chart due to its number

of plans (Figure 6.6). We plotted the contour line of the value 𝑃 𝑍
𝑘 for each of the 720

plans, as well as the contour line for the execution time. The two values were normalized.
This large query led us to a more realistic evaluation of the method since the query has
many plans that are very similar with regard to resource consumption. We can split the
horizontal axis into six major groups of plans with regard to the execution time (check the
vertical lines): (1) a set of bad plans from 𝑝1 to 𝑝118, (2) a set of slightly worse plans from
𝑝119 to 𝑝239, (3) a set of good plans from 𝑝240 to 𝑝357, (4) another set of good plans from

𝑀1 𝑀2 𝑀3 𝑀4 𝑀5 𝑀6 𝑀7

107

108

𝑃𝑍 𝑘

A

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6

𝑀1 𝑀2 𝑀3 𝑀4 𝑀5 𝑀6 𝑀7

1
10

100
1000

se
co

nd
s

B

Figure 6.5: (A) 𝑃 𝑍
𝑘 for each query plan 𝑃𝑘. (B) Execution time in

ms for each query plan using eight machines (𝑚 = 8).

6.3 Evaluation 115

118 240 358 480 600 720
0

0.5

1

𝑃𝑘

Estimated (𝑃 𝑍
𝑘) Execution time (ms)

Figure 6.6: Execution time and cost of each plan for 𝑀8, using
eight machines (𝑚 = 8).

𝑝358 to 𝑝480 but slightly worse than (3), (5) another set of bad plans from 𝑝481 to 𝑝600, and
finally, (6) another set of good plans from 𝑝601 to 𝑝720. Let us concentrate on the two sets
of good plans (3) and (6). These two sets are not completely homogeneous, as there are
plans that represent peaks in the execution time. Comparing the two lines, we can see that
the estimated values are strictly associated with those peaks.

Furthermore, the region with lower values in (3) and (6) contains the plans ranked
in the top 10 plans. Table 6.3 shows the details of these plans. The plan ranked first with
regard to the execution time was in the set (6), and indeed, coincided with the plan ranked
first by using the estimated values. In other words, the method identified the best plan for
the query. The second, third, sixth, seventh, and ninth plans are also ranked similarly by
the estimate. The others are ranked slightly further away by the estimates than in the top
10 ranking of execution time.

The analysis of 𝑀8 shows that, due to the estimated values produced through the
methods and the dataset approximations used, a likely scenario in a larger set of queries
will be the selection of a very good plan, with regard to the subsets of good and bad plans
that were identified with a reasonable distinction between them.

Table 6.3: Top 10 plans for 𝑀8 and their respective rank based on
the estimated costs.

Plan Rank Est. Rank Execution time (ms) 𝑃 𝑍
𝑘

𝑝679 1 1 1,281 63,733,438
𝑝681 2 5 1,285 67,381,386
𝑝673 3 3 1,335 64,304,850
𝑝663 4 17 1,418 73,936,524
𝑝661 5 34 1,492 77,586,539
𝑝633 6 4 1,611 68,292,784
𝑝350 7 9 1,636 71,472,129
𝑝331 8 12 1,637 71,277,014
𝑝637 9 2 1,647 64,614,058
𝑝309 10 23 1,661 78,261,003

6.3 Evaluation 116

6.3.3 Resource Consumption of Schedules
In this section, we compare the estimated and real resource consumption (cpu and

network usage) for the two large queries, 𝑀7, and 𝑀8. In this experiment, we considered
the three methods for query scheduling proposed in Chapter 4 and the best and worst plans
for each of these two queries. The objective was to measure the effectiveness of the query
scheduling with regard to resource consumption and to compare the performance of the
schedules generated by the three methods in the execution engine.

Table 6.4 presents the result of the experiment. The available CPU time reported
reflects the total processing power available in the cluster, i.e., it considers eight machines
with four CPUs each (32 cores). For example, the plan 𝑀𝑝1

7 scheduled by LR (first
line) executed in 5’32” (wall clock time). To execute the plan in this amount of time,
the execution engine in fact used 145’35” from the 177’16” of available CPU time
(considering 5’32”×8 × 4). The difference, i.e., 31’40”, was wasted by some machines,
due to the early termination of job processing (unbalanced execution).

We recall from Chapter 4 that the LR method generated schedules with lower
resource consumption compared to that generated by the greedy and LP relaxation meth-
ods. By analyzing Table 6.4, we can check if the LR really does result in lower resource
consumption when performing the query plans in the execution engine. The difference is
significant for larger queries, e.g., 50” for 𝑀𝑝1

7 . The wasted CPU time is also reasonably
smaller for LR in all large query plans, e.g., 31’×51’×70’ in 𝑀𝑝1

7 for LR, GR, and LP,
respectively. This result reinforces the superiority of LR. The lower execution time usu-
ally compensates for the large optimization time, but more importantly, in an environment
with repetitive query execution, this can produce a consistent increase in system through-
put. In the next section we investigate the wasted CPU time by examining the resource
consumption as well as the plan execution.

Table 6.4: Resource consumption for 𝑀7 and 𝑀8 in a cluster with
32 cores, eight machines.

CPU Time
Plan Method Network (GB) Exec. Time Used Available Wasted

𝑀𝑝1
7

LR 34.44 5’32” 145’35” 177’16” 31’40”
LP 23.89 6’45” 145’41” 216’28” 70’46”
GR 36.06 6’22” 152’31” 203’50” 51’19”

𝑀𝑝2
7

LR 55.12 7’39” 211’08” 245’16” 34’07”
LP 45.45 8’05” 212’38” 258’57” 46’19”
GR 58.16 9’09” 207’55” 292’54” 84’59”

𝑀𝑝679
8

LR 0.73 1.3” 29” 41” 11”
LP 0.71 1.3” 28” 41” 12”
GR 1.10 1.7” 41” 55” 14”

𝑀𝑝497
8

LR 6.28 2’17” 45’45” 73’25” 27’40”
LP 11.17 2’38” 45’59” 84’44” 38’45”
GR 12.78 3’00” 46’46” 96’24” 49’37”

6.3 Evaluation 117

6.3.4 Resource Consumption Along Query Execution
This section presents measurements related to the query execution engine, show-

ing the behavior of the CPU and network usage while executing query plans. As each plan
presents a particular CPU and network usage pattern, it is not possible to generalise the
result for all plans. Thus, we selected two contrasting plans to present here: 𝑀𝑝1

7 , and 𝑀𝑝6
6 .

We used 𝑓 𝑞 = 1 in this experiment, to force the maximum balance for the plans, at the
cost of an increased network usage. We measured the use of CPU, the use of network and
the size of the wait and execute queues on each machine in the cluster, at each second for
𝑀𝑝1

7 , and at each quarter of second for 𝑀𝑝6
6 (due to its smaller execution time). The wait

queue capacity was fixed at 50 jobs per machine (at most 400 jobs in the Worker Module
when 𝑚 = 8). The execute queue capacity was fixed at 100 jobs per Worker module.

Figure 6.7 shows the result for 𝑀𝑝6
6 . There are four charts: the percentage of CPU

usage in the cluster (A), the Network usage in Mb/s (B), the size of the execute queue for
each machine (C), and the size of the wait queue for each machine (D). The horizontal
axis, common to all charts, indicates the time, from zero to 3.5 seconds. The charts depict
the usage of the respective resource at each instant of the plan execution. This query plan
has three steps with 5572, 5544, and 5450 jobs each, respectively. The total network usage
for the plan was 1.36 GB. During the plan execution, none of the resources reached its
limit. Although the network usage does not reach the maximum bandwidth available, the
number of fragmented transfers limited the use of CPU to approximately 85%. The plan
execution finished at the same time (within a second) in all machines, indicating a balanced
execution. This can be seen by inspecting the decrease in the CPU usage curve.

0
20
40
60
80

CP
U

us
ag

e%

A

0
50

100
150

Ne
tw

or
k
(M

b/
s) B

0

25

50

Re
ad

y
jo
bs

C

0 0.5 1 1.5 2 2.5 3 3.5
0

100

200

W
ait

in
g
jo
bs D

Figure 6.7: Runtime measurements for 𝑀𝑝6
6 scheduled by LR

method.

6.3 Evaluation 118

Similarly, Figure 6.8 presents the same measurements for 𝑀𝑝1
7 . This plan ran for

332 seconds (5’32”) and used 36.06 GB of network bandwidth during its execution. It has
two steps with 1420 and 1416 jobs each, respectively. CPU usage stayed at approximately
100% almost all the time, except for two intervals at 30–60s and 85–95s. These two
intervals coincide with two empty execution queues (in C, the dotted and the dashed lines
at the bottom) for which the two respective machines were waiting for data partitions, as
can be seen in the same interval in the wait queue (D). This behavior was caused by the
𝑓 𝑞 used, which significantly increased the use of the network. The interval for which the
execution queue reduces themost in all machines (from 50s to 120s) coincides with the end
of the first plan step, when the worker modules start to copy intermediate data partitions
from other machines.

Another relevant aspect of the execution of 𝑀𝑝1
7 is the fact that the machines

finish the execution at distinct times (note the steps in the CPU usage curve, in the last
minute of the execution). The schedule provided by the LR method for this plan indicates
an almost balanced execution. However, our investigation indicated that the estimated costs
failed to identify the complexity of some data partitions. This fact can be evidenced by
observing that the machine that ran the longest in the plan is indeed the one that always
required the most execution queue time (see the dash dotted line in (C)).

This experiment shows how the precision of the estimates interferes in the exe-
cution, with regard to query execution balance, despite the efficiency of the scheduling
method. Although it can have a small effect in smaller queries, larger ones such as 𝑀7 can
present a reasonable impact. To address this issue, we point out a few directions for future
work. As we have shown in Figure 6.5, the selection of the execution plan can identify a

0

50

100

CP
U

us
ag

e%

A

0

200

400

Ne
tw

or
k
(M

b/
s) B

0

50

100

Re
ad

y
jo
bs

C

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340
0

100

200

W
ait

in
g
jo
bs D

Figure 6.8: Runtime metrics for 𝑀𝑝1
7 scheduled by LR method.

6.3 Evaluation 119

plan that is orders of magnitude less costly than the worst plan for a query, i.e., the plan se-
lection cannot be neglected in an efficient system for spatial query processing.With regard
to this, the first direction we propose is to follow the suggested improvements for the cost
model, proposed as future work in Chapter 3. Second, a more elaborate execution engine
can be implemented, in which the machine that finishes its processing earlier offers help to
others machines that still have jobs to process. This will usually result in a more balanced
execution, at the expense of an increase in network usage at the end of plan execution.
Finally, in a scenario where multiple queries are processed in batch mode, the remaining
load of the first query can be used in the scheduling of the next query, by means of the 𝑢𝑖
parameter that features in our proposed models.

6.3.5 Scalability of Query Execution
We also evaluated the scalability of the execution engine when running the

multiway queries 𝑀1 to 𝑀8. For this experiment, the best plan for each query, as identified
in Section 6.3.2, was executed with 𝑚 = 4, 8, 16, and 32 machines. The result is presented
in Figure 6.9. To compute the scalability of each query, we assume that the execution time
is equals to one in 𝑚 = 4, and calculate the reduction in the execution time in the other
cluster sizes. The solid line labeled “ref.” provides a reference for linear scalability.

As the chart in Figure 6.9 shows, except for 𝑀5, all other queries exhibited
near linear scalability, reducing nearly half the time to run the query when we double
the number of machines. Query 𝑀5 did not exhibit the same scalability due to existing
dependencies between its data partitions, that reduces the CPU usage along its execution,
when 𝑚 ≥ 8. This behavior can occur to some queries as a more complex pattern of
dependencies between data partitions can reduce the CPU usage while partitions are

4 8 16 32

0.13

0.25

0.5

1

𝑚

sc
ala

bi
lit
y

𝑀1 𝑀2
𝑀3 𝑀4
𝑀5 𝑀6
𝑀7 𝑀8
ref.

Figure 6.9: Scalability of the execution engine, running multiway
spatial join queries.

6.4 Final Considerations 120

processed or transferred from other machines. Also, queries with a small number of jobs,
similar to 𝑀5, are more susceptible to this problem as the number of jobs to fill the
execution queue is limited. Although this can be mitigated by a more elaborated data
partitioning, it is also dependant on the query itself and in the characteristics of the datasets
that are joined. Thus, we regard this issue as future research.

6.4 Final Considerations
In this chapter, we introduced some methods for the query optimizer that is

proposed in this thesis. We also presented a simple query execution engine that can
execute multiway spatial join queries following the schedules provided by the optimizer.
The evaluation showed that the estimated communication cost identified the pattern of
network usage when the query plans were run on the execution engine. Furthermore, the
plan selection method chose the best plan for almost all queries in our experiments and
usually established a good ordering of the plans.

We also investigated resource consumption in the execution of a query plan for
the three proposed methods for queries scheduling and how the estimated query effort can
interfere with the balanced execution of the plans. We also indicated future directions of
research to further improve the precision of the cost model and the query execution engine.

We have assumed throughout this thesis that the machines in the cluster are used
exclusively to process a single query at a time (thus, without interference from other
queries). Although this is a reasonable assumption due to the size and the resource con-
sumption of spatial queries, it does not allow for the processing of multiple queries concur-
rently (i.e., a multi-query workload, with the queries sharing the cluster resources [66]).
In the multi-query scenario, the execution engine must be able to decide where and when
to run queries concurrently before plan scheduling. Also, other possible sources of pro-
cessing costs are not represented in the proposed models, such as operating system costs,
which can interfere with the efficient usage of the cluster resources. These issues are left
as future research.

Another question that requires future work is the processing of other types of
multiway spatial queries. Although the chain queries are a representative kind of multiway
spatial join query and have many practical uses, the other types of queries mentioned in
Chapter 2 have different CPU and network usage patterns. For each intermediate result, a
chain query checks the predicate between the spatial object in the main dataset (at the root
of the plan tree) and the spatial object of the dataset in the next step. In contrast, due to
the non-transitivity of spatial operators, clique queries for each intermediate result verify
the predicate of all previous spatial objects [55]. The CPU usage pattern of bushy queries,

6.4 Final Considerations 121

including cycle queries, lies in between the usage pattern of chain and clique query, as
bushy queries can be decomposed into a set of chain and clique sub-queries [2].

In the next chapter, we present a literature survey of work on issues that are
different from, but related to the ones discussed in the present thesis. Further, we compare
the reported solutions with the respective ones addressed in this thesis.

CHAPTER 7
Related Work

Recently, growing attention has been focused on the processing of spatial data in
distributed systems and a number of studies on this topic have been published (see [29] for a
survey). In this chapter, we present a literature survey ofmultiway spatial join processing in
distributed systems and compare the reported methods with the respective ones identified
in this thesis.

We begin with a discussion of work proposing foundations on multiway spatial
join query optimization and execution in Section 7.1, briefly recalling some studies dis-
cussed in detail in Chapter 2 to place it in context. Recently reported work based on un-
derlying frameworks for distributed data processing is discussed in Sections 7.2 and 7.3.
We also discuss systems designed from scratch in Section 7.4. Section 7.5 presents a com-
parison of the execution time of multiway spatial join queries performed in our execution
engine and in the other works surveyed. A summary of the comparison is presented in
Section 7.6. We conclude by presenting our conclusions and final considerations in Sec-
tion 7.7.

7.1 Foundation Work on Spatial Query Optimization
Mamoulis and Papadias [57] presented an in-depth study of non-distributed spa-

tial join queries processing, describing algorithms, data partitioning, plan cost estimation,
and plan selection. To the best of our knowledge, it is the most relevant study in this regard.
The same authors also described a cost-model for window queries, simple spatial join, and
multiway spatial join in non-distributed systems [56]. Several of the authors’ algorithms
and methods were mentioned in Chapter 2 and adapted in our work in order to build a so-
lution for distributed systems. Other work also propose non-distributed query optimizers,
such as the work of Fournari et al. in [33, 34]. However, they are limited to simple spatial
join queries.

A number of researchers (e.g., [62, 69, 70]) propose distributed algorithms for
spatial join using two datasets at a time. Despite the fact that these algorithms are not
designed formultiway spatial join, they comprise a set of general algorithms for spatial join

7.2 MapReduce-based Work 123

processing. Due to this, their design principles constitute a foundation, and are employed
to process multiway spatial join queries in successive steps both in the present study and
in other systems mentioned in the following.

Apart from those foundations, there is also significant research on distributed
database technology [65], with some DDBMS supporting features for spatial data han-
dling. In our work, we considered the distribution of query execution at the intra-operator
level [65], i.e., even a single step of the query plan can be distributed in the cluster. This
design attempts to address the efficient and scalable processing of multiway spatial join
over large datasets. Regarding spatial data, the traditional focus of DDBMS systems is to
support multi-query workloads and remains at the inter-operator and inter-query level of
parallelism. To the contrary, the body of research dedicated to processing spatial data in
distributed data processing frameworks, such as MapReduce [24], Spark [92], Impala [7],
focuses on the intra-operator level. Since our scope does not include multi-query work-
loads, we limited our comparison in this regard. Notwithstanding, as discussed in Chap-
ter 2, we attempted to consider both intra-operator parallelism and query planning and op-
timization. Query planning and optimization has been considered mostly only in DDBMS
systems.

There are exceptions, however, with regard to intra-operator parallelism on spatial
DDBMSs. Recently, a distributed version of the DBMS Secondo [40] was presented
by Nidzwetzki and Güting [63] that uses Apache Cassandra [50] as the underlying data
storage subsystem and a query execution engine that supports query optimization. The
discussion of this work is given next.

In the following, we review systems to process multiway spatial join queries.
We have divided the discussion into three sections: systems that are built on existing
frameworks such as 𝑖) MapReduce, 𝑖𝑖) Spark, and 𝑖𝑖𝑖) systems that are designed from-
scratch with regard to query planning and execution.

7.2 MapReduce-based Work
In this section, we cover the work proposed in the literature to process multiway

spatial join queries using the MapReduce framework [24].
The early studies based on MapReduce focused on how to cope with the design

decisions of the framework, such as the need to process the data in two phases (the map and
reduce functions) and the need to create homogeneous tasks with regard to the load they
cause in the reduce phase. Some examples of works that proposed methods to deal with
these limitations are SJMR [93], VegaGiStore [94], and SpatialHadoop [28]. These studies
support the processing of only simple spatial joins, and a strategy to process multiway
queries is not presented.

7.2 MapReduce-based Work 124

With regard to the processing of multiway spatial join queries, another limitation
imposed by the design of MapReduce is the need to persist the intermediate results when
processing the query through pairwise joins. This causes a high I/O cost due to having to
read and write the intermediate data from disks, which in general causes a degradation of
the performance of multiway query processing.

Furthermore, the default load balancer1 of MapReduce also imposes challenges
to spatial data processing. The default algorithm lazily assigns tasks to available slots
in the cluster. This behavior requires tasks to have evenly spread loads to perform a
balanced execution [49]. As discussed earlier, spatial data is by nature non-uniform and
thus, the occurrence of straggler tasks is expected, resulting in an unbalanced execution.
Although other algorithms that improve the execution of non-uniform tasks inMapReduce
frameworks are available (e.g., [60, 86]), all reported studies maintain a focus on providing
equally-sized-tasks.

In the following, we describe some relevant works and discuss how each of them
address these issues.

Hadoop GIS: This work was first introduced by Aji et al. [2] and later improved
by the same authors in [3]. To provide evenly-sized tasks, the authors used a recursive
data partitioning method, which splits a set of initial partitions (or tiles) until an arbitrary
trade-off is reached. To overcome the high I/O cost for intermediate results, an algorithm
based on Synchronous Traversal [67] is used, in which all query steps are processed in
a single pass, combining all the datasets at once. Although the authors mention a query
optimizer based on heuristic rules, no detail is provided about the rules used. Also, as it is
based on predefined rules (not cost-based), a plan selection method is not mentioned.

Hadoop 𝜖CP: This work was first introduced in [39] and later improved in [38].
The authors proposed a system to process multiway spatial join queries by processing
all datasets in two passes: the first identifies which data partitions need to be joined
with each other (the Controlled-Replicate method) and the second performs the predicate
check. While identifying the data partitions to be joined, the Controlled-Replicate method
attempts to minimize the communication cost incurred. This step is necessary as dataset
metadata is not considered when identifying the data partitions pairs that need to be
processed (like the metadata provided by the histograms we propose in Chapter 3). With
regard to the data partitioning, the authors used a grid of disjoint cells to split the spatial
extent, using replication of objects that intersect more than one grid cell. Duplication
avoidance is achieved by using the Reference Point method [25]. The work addresses only
the filter step of join queries, i.e., it processes only the MBR of spatial objects, and does

1The term scheduling on MapReduce literature is reserved for the distribution of cluster resources to
multi-user loads, similar to multi-query database loads.

7.3 Spark-based Work 125

not identify the real result set for a query. Furthermore, the authors did not consider the
use of either a rule-based nor a cost-based optimizer.

Sphinx: The work of Eldawy et al. [30] extends the distributed SQL processing
engine Impala [7] to process multiway spatial join queries. Impala is an SQL query engine
for scalar data that runs on top of a MapReduce framework. It provides a query optimizer
that can enumerate and determine the cost of plans based on the cardinality and the number
of distinct values of data partitions. Furthermore, it determines a distributed execution plan
before the query execution, but with the single goal of reducing the communication cost
in the cluster. Although it uses MR, only the storage subsystem is used. The map and
reduce mechanism was replaced by a customized execution engine. Sphinx introduces
spatial data types, spatial indices, and spatial predicate checking algorithms into Impala,
extending it in order to process spatial queries. The authors compared the execution
time of simple spatial joins and concluded that Sphinx can achieve a speed-up of up to
three times, compared with SpatialHadoop [28]. Although multiway spatial join is not
mentioned, we believe it can be performed, since Impala stores the intermediate results
in memory (or on disk) and executes a cascaded pairwise execution of steps. However,
the authors focus on simple spatial joins and the details of how to identify the size and
communication costs of intermediate results were not discussed. Similarly, the costs of
processing tasks were not mentioned. As we investigated in Chapter 4, there is a trade-off
between communication and processing costs and a schedule producedwith the single goal
of reducing the communication costs can lead to a significant increase in the makespan.

7.3 Spark-based Work
In this section, we present systems to process multiway spatial join queries using

the Spark engine [92]. Spark has a programming model similar to MapReduce but extends
it via a data-sharing abstraction called “Resilient Distributed Datasets” (RDD). Through
RDDs, Spark addresses the limitation of theMapReduce model with regard to the high I/O
cost incurred. This is achieved by the use of replicated external storage for the purpose of
sharing intermediate data across processing steps. Also, Spark focuses on interactive tasks
processing, presenting a smaller latency than MapReduce (100ms), which in turn focuses
on batch oriented processing [92]. Further, Spark allows the storage and processing of
data totally in-memory and its API enables an application to set the preferred locations for
tasks, a feature that might be used to schedule data to be processed on specific machines.

The processing of multiway spatial queries through pairwise joins does not have
the same limitations of MapReduce due to the use of in-memory RDDs. However, similar
to MapReduce, in order to perform a balanced execution, Spark also requires evenly-sized
tasks. Thus, beyond the proper scheduling of tasks and the selection of plans, Spark does

7.4 Systems Designed from Scratch 126

not have ways of handling spatial data, such as a mechanism to partition data, a language
to specify spatial queries, nor predicate checking algorithms. Some early work on spatial
data processing using Spark only supports simple spatial joins, not presenting a strategy
to process multiway queries, and is not discussed here (e.g., [88, 89, 91]).

MSJS: To the best of our knowledge, the only study reported to process multiway
spatial join queries using Spark is MSJS [27]. To process a multiway join, MSJS first re-
partitions each dataset using a uniform grid, with an arbitrary number of cells. It replicates
objects that intersect with more than one grid cell and also attempts duplication avoidance
by using the Reference Point method [25]. After the partitioning phase, MSJS joins the
partitions with the same IDs in a number of pairwise joins, producing intermediate results
in memory. No strategy to determine the costs of a query is discussed. The authors
evaluated the effect of the number of partitions in their algorithm and their conclusion
is similar to ours in Chapter 3. That is, the number of partitions corresponding to the best
performance should be carefully selected so as not to be overly large nor small. However,
the number of partitions was identified in their study by experimentation rather than by
an algorithm. Also, the scheduling of data partitions is performed by the default load
balancer provided by Spark and the API for setting the preferred locations for tasks was
not mentioned. Further, with regard to the effect of the different join plans (referred to
as the input sequence), the authors concluded by experimentation that datasets should be
processed in order of size, smallest first. Although this is a general principle that can result
in a smaller intermediate result, we have shown in Chapter 6 that selecting the best plan for
a query is not trivial with large queries and the scheduling of tasks should be considered
as it impacts query execution time.

We compare our proposed query optimizer and execution engine with the results
reported by Du et al. [27], using a few queries also evaluated in their work and a similar
cluster size. We present the results in Section 7.5.

7.4 Systems Designed from Scratch
In this section, we review two systems built from scratch, in the sense that they

did not use a general underlying framework for distributed data processing.
Distributed Secondo [63] is a distributed, general-purpose DBMS which is

highly scalable and fault tolerant, using the framework Cassandra [50] to store data. A
uniform grid is used for spatial data partitioning and objects that intersect with more
than one cell are duplicated. The Reference Point method is used to prevent duplicate
results. An algorithm adapted from SMJR [93] is used to execute the spatial join. With
regard to query scheduling, the authors propose a decentralized algorithm to assign tasks
to query processing nodes in which each machine creates its own jobs based on local data.

7.5 Comparison of Execution Times 127

A load balancing algorithm is used at the end of the query execution in which under-
utilized machines are used to reduce the load of busy ones by randomly reassigning some
tasks. Similar to MapReduce based work, intermediate results also need to be persisted to
process multiway queries. Further, the authors left the integration of distributed queries in
the query optimizer provided by DBMS Secondo [40] as future work.

DST: Cunha et al. [18] proposed a distributed algorithm to process multiway
spatial join queries in distributed systems by joining all datasets at once. It is similar to
the Synchronous Traversal (ST) [67] algorithm and uses the independent framework for
spatial data processing introduced in [20, 23]. Data partitions are created using a recursive,
non-disjoint partitioning scheme, based on R-Trees, in which spatial objects do not need to
be replicated. Two algorithms for data distribution are considered: the first one is based on
a round-robin allocation and the second one, called Grid Proximity Area [20], allocates
data partitions to machines based on the spatial boundaries of each partition. Since all
datasets are processed at once, no query optimizer was presented.

7.5 Comparison of Execution Times
In this section, we compare the execution times of three multiway spatial join

queries, when executed using our proposed methods and in other two related works:
one based on MapReduce, Hadoop 𝜖CR [38], and the other based on Spark, MSJS [27].
Furthermore, we put into perspective results presented by Cunha et al. [18] (DST) and
by Nidzwetzki and Güting [63] (Distributed Secondo). Sphinx [30] presented results
only for simple spatial joins using two synthetic datasets with rectangles (not real spatial
objects) and thus, it was not considered in this comparison.

We compared the execution times reported by Du et al. [27], for the queries PR
⋈ LM ⋈ AW (small, 𝑀9), PR ⋈ AW ⋈ ED (medium, 𝑀10), and AW ⋈ LW ⋈ ED (large,
𝑀11). Both methods used datasets from the TIGER 2015 spatial database. The datasets
and their sizes in the FileGDB format are: Primary Roads (PR) 41MB, Area Land Mark
(LM) 105MB, Area Water (AW) 823MB, Linear Water (LW) 2.1GB, and Edges (ED)
14GB.

The execution environment used by Du et al. [27] was composed of four Power
Edge R720 Servers. Each server has one Intel Xeon E5-2630 v2 2.60 GHz processor, 32
GB of RAM and runs a SUSE Linux enterprise server 11 SP2 operating system. According
to the Intel website, the Xeon E5-2630 has six cores and 12 hyper-threads. The network
capacity was not mentioned. The version 2.6.0 of Hadoop and the version 2.0.1 of Spark
were used, both running on JDK 1.7.

To executed those three queries (𝑀9, 𝑀10, and 𝑀11) using our proposed meth-
ods, we configured a similar environment composed of four m4.2xlarge Amazon EC2 in-

7.5 Comparison of Execution Times 128

stances, each with eight vCPUs of an Intel(R) Xeon(R) CPU, E5-2686 v4 model, running
at 2.30GHz, and with 32GB of RAM. According to the Amazon specification, each vCPU
is a Hyper-thread of an Intel Xeon core.2 The machines were allocated to the same data
center, interconnected by a virtual network with a capacity of up to 10 Gbps for single-flow
and 20 Gbps for multi-flow traffic in each direction (full duplex). The operating system
used was the default Ubuntu Server 16.04 LTS offered by the provider through an AMI
image.

Thus, in comparing the specifications, we believe that the hardware used in [27]
is similar to ours. Some differences that work against our own environment are: the lower
CPU clock (2.6 × 2.3 GHz), the smaller number of hyperthreads per server (12 × 8), and
the use of a virtualized environment that incurs the Hypervisor overhead.

The chart in Figure 7.1 presents the execution times of each query for each system.
The smallest query, 𝑀9, was performed in 6” by our method, while MSJS executed the
same query in 82” (13.6x). Similarly, the medium query, 𝑀10, was executed in 2’21” by
our method and in 21’08” by MSJS (9x). For the largest query, 𝑀11, our method took
18’, compared with 28’ by MSJS (1.6x). The gap between the two systems was lessened
when the query requiredmore communication in the cluster. However, the difference in the
amount of time remains significant. The largest query terminates 10’ earlier for our method
compared to MSJS. The performance of the systems based on MapReduce is worse than
the systems that perform the execution in memory, without persisting intermediate results.

Although the same queries were not executed in DST [18] and Distributed
Secondo [63], we nevertheless present some results given by the authors in order to put
them in perspective. The authors of Distributed Secondo [63] compared the performance
of their systemwith those of SpatialSpark [89] and SpatialHadoop [28]. The times reported

𝑀9 𝑀10 𝑀11

0

50

100

150

0.1 2.4

18
.1

1.4

21 28
.3

5.1

58
.8

15
2.3

Ex
ec

ut
io
n
tim

e(
m
in
)

Our methods MSJS Hadoop 𝜖CR

Figure 7.1: Comparison of the execution times for 𝑀9, 𝑀10, and
𝑀11.

2https://aws.amazon.com/ec2/instance-types.

7.6 Overall Comparison of Features 129

for a simple spatial join involving two datasets from Germany, called Roads and Building
(size not mentioned), generated from Open Street Maps (http://www.openstreetmap.org),
are 9’41” for Spatial Spark, 21’54” for Distributed Secondo, and 23’57” for Spatial
Hadoop. Considering this comparison and, due to the fact that Distributed Secondo also
stores intermediate results on disk, it seems that its performance is similar to that of
MapReduce-based systems.

With regard to DST [18], even plans for small datasets seem to require relatively
large runtimes. For instance, a multiway spatial join query (IHRF) involving four datasets
of sizes 64MB, 15MB, 1.5MB, and 1MB, ran for 9’19” in a cluster of eight machines. The
same query ran in less than one second using our method in the hardware described at the
beginning of this section.

7.6 Overall Comparison of Features
Table 7.1 presents a summary of the work discussed in this chapter. We included

in the table only systems that were designed to run multiway spatial join queries. The
symbol indicates that a feature is supported as a primary objective and an evaluation
is conducted. The symbol ⊙ indicates that the feature is supported by the underlying
framework, sometimes not considering the specifics of spatial data, such as the case
for general cost estimation based only on cardinalities and default plan scheduling (load
balancing) without beforehand considering the task load in a planning step. The symbol#

Table 7.1: Summary of related work and their capabilities. The leg-
end for the symbols are: supported feature , feature
supported by the underlying framework ⊙, feature par-
tially supported #, and feature not supported ×.

System Data Parti-
tioning

Data Dis-
tribution

Cost
Estimation

Plan
Scheduling

Plan
Selection

Query
Execution

Hadoop GIS [3] ⊙ × × ×
Hadoop 𝜖CP [38] ⊙ × × × #a

Sphinx [30] ⊙ × ×b ⊙c
MSJS [27] ⊙ × × ×
DST [18] × × ×
D. Secondo [63] × #d ×
This thesis #e

aOnly considers MBRs. Thus, if the data is polygon based, only the filtering step is performed.
bData partitions are distributed to machines, but a strategy to measure its loads and assign to machines

with some criteria is not discussed.
cRule-based selection.
dThe scheduler does not define a global strategy to execute tasks. It is a decentralized algorithm, in

which each machine creates its tasks based on local data.
eRound-robin based, with support for other distribution strategies.

7.7 Final Considerations 130

indicates that the feature is partially supported, i.e., it is mentioned in the study and
a naïve method is considered. However, better alternative methods are known and not
implemented. Finally, the symbol × indicates that the feature is not supported.

As can be seen in Table 7.1, our work is the only one that considers all phases of
a distributed cost-based query optimizer. Some observations are given as notes on some
features. The focus of the other works was on data partitioning and on query execution
and these features are present in all systems. The only work that considers plan selection
is Sphinx, provided by the underlying framework (Impala). However, it is an optimizer
based on rules, some of them considering costs, but only costs given by cardinalities and
sizes of data partitions (no specific cost for spatial data is considered).

7.7 Final Considerations
In this chapter, we compared our proposed methods against related work in the

literature, showing the originality of our cost-based query optimizer for multiway spatial
join queries in distributed systems. The reasons for its better performance, when compared
to other similar systems, stem from the focus on query planning, in particular, the query
scheduling method and the design choices, which are distinct from the related work.

About the importance of query scheduling, we demonstrated in Chapter 4 the dif-
ference in the resource consumption between a naïve greedy algorithm and better meth-
ods based on the theory of combinatorial optimization. The previously reported systems
compared here considered only a load balancing mechanism, rather than a query schedul-
ing based on metadata. This load balancing is performed by the underlying framework or
implemented from scratch, but in both cases, based on the assignment of tasks to idle ma-
chines during query execution, i.e., a kind of greedy strategy that often results in inefficient
cluster resource usage.

With regard to our design choices, we considered an approach for data partition-
ing in which a particular grid is used for each dataset and its granularity, (size of data
partitions), is based on the metadata gathered from datasets. In this way, we can maintain
metadata about each partition, determine the tasks for each query in advance, and optimize
a query before its execution. This strategy also does not require the repartitioning of data
in each join query performed, in contrast to the related work investigated.

CHAPTER 8
Conclusion

The efficient processing of multiway spatial join queries in distributed systems
imposes significant challenges. In this thesis, we addressed some of these challenges by
proposing and evaluating models and methods that constitute a cost-based optimizer for
multiway spatial join queries. We conclude this thesis by reflecting on our contributions
(Section 8.1), the limitations of our approach (Section 8.2), and opportunities for future
work (Section 8.3).

8.1 Summary of Contributions
The contribution of our work primarily lies in providing a set of comprehensive

models and methods that form a cost-based optimizer for multiway spatial join queries.
The optimizer is able to select a good execution plan for distributed processing, taking
into account 𝑖) the partitioning of data based on spatial attributes of datasets, 𝑖𝑖) the intra-
operator level of parallelism, which enables high scalability, and 𝑖𝑖𝑖) the economical use
of cluster resources by appropriately scheduling the query before execution. The extent
and relevance of our work can be accessed by a detailed description of our investigation
and results, given next.

With the aim of designing a cost model, we started by identifying relevant
metadata for spatial datasets and the distribution of data partitions in the distributed
system. We proposed an improved multidimensional grid histogram to be used both as
a data structure to organize such metadata, as well as a distributed data access method. We
then proposed new methods for histogram construction based on the proportional overlap
between spatial objects and histogram cell boundaries, which increased the precision
of estimates of query costs. Furthermore, we presented improvements to overcome the
imprecisions caused by the MBR simplification of spatial objects in grid histograms
and introduced formulae to estimate join selectivity of spatial joins with complex spatial
objects, i.e., when the two datasets have line objects or when one dataset is of type line
and the other is of type polygon. Although the cost model is designed with the estimation

8.1 Summary of Contributions 132

of multiway spatial join queries in mind, it can also estimate the selectivity of window and
simple spatial join queries.

By using the costs provided by the cost model, we formulated the distributed
multiway spatial join plan scheduling problem as a bi-objective linear model (FM). The
model is used to schedule query tasks in distributed systems, considering the minimization
of both makespan and communication cost as objectives. We discussed the challenges
involved in solving this model and introduced three methods for computing schedules
using a simplified version of the model (SM), namely, a greedy algorithm (GR) and two
algorithms based on combinatorial methods: the well-known Linear Relaxation (LP) and
the more sophisticated Lagrangian Relaxation (LR). The reduction in computing resources
when scheduling a query through LR is significant. Although it is a more computationally
intensive method, we presented scenarios for which it may be applied. One such scenario
is a system that focuses on the processing of mid-size or large spatial datasets that often
require a query running time sufficiently large to amortize the optimization execution time.
Another one is a system that repeatedly runs stored queries, where the plan can be cached
and reused. In these scenarios, the proximity of the approximate schedules to the optimum
and the improvement of resource consumption (processing and communication costs) that
the LR method produces often result in a considerable increase in system throughput. LP
and GR are recommended for scenarios where small ad-hoc queries are predominant.

A major feature of the query scheduling method is the ability to control the trade-
off between processing and communication costs. Our evaluation showed that attempting
to minimize both processing and network utilization creates conflicting objectives, in
the sense that to achieve a better balance in the query execution (and consequently a
reduced makespan), an extra cost is incurred to transfer partitions to machines that are
underutilized. We investigated how to control the scheduling behavior concerning the
usage of these resources and proposed a method based on the post-optimality theory
of integer linear programming, which can identify all the distinct schedules for a given
numerical instance of SM. The method requires the computing of optimal schedules for
various sub problemswithin the instance. To address the scenario where optimal schedules
are unavailable or difficult to find, we also introduced a method to provide an upper
bound on the exact schedule, based on approximate schedules. For every instance tested,
the schedule determined by LR, was very close to the optimal schedule. By adapting the
execution of a query to the limits of the processing power and network bandwidth imposed,
these two LR-based methods can usually be used to provide answers to practical questions
that arise when scheduling queries using the SM model.

The applicability of the models for query scheduling and the accompanying
method for resource consumption control is not limited to multiway spatial join queries.
The proposed models (FM and SM) are suitable for the scheduling of tasks composed of

8.2 Limitations of our Approach 133

data partitions previously distributed in a number of interconnected machines that need
to be aligned. Indeed, they are general enough to be used in other distributed system as
well, such as a load-balancing mechanism within the existing platforms for distributed
data processing (MapReduce, Spark, etc.).

The complete methodology for query cost estimation, query scheduling, and
query plan selection was used to implement a query execution engine that can execute
multiway spatial join queries in distributed systems, following the schedules provided
by the query optimizer. Our evaluation showed that the estimated communication cost
followed the pattern of the real data transfer measured when running the query plans on
the execution engine. The query optimizer was able to choose good execution plans for all
the queries tested in our experiments with public spatial datasets (that have a significant
range of sizes). Further, it was possible to establish a consistent relative ordering of all
plans with respect to resource consumption. Also, sets of “good” and “bad” plans for a
given query were identified with a reasonable level of distinction.

8.2 Limitations of our Approach
While we believe that the models and methods in this thesis are useful, they have

been designed under some assumptions and suffer from some limitationswhen considering
more general applications. These limitations are now discussed.

One assumption we have made is that the machines in the cluster are used
exclusively to process just one query at a time, without interference from other queries.
This does not allow for the processing of multiple queries concurrently in a multi-query
workload where queries share cluster resources. In a multi-query scenario, the execution
engine must be able to decide where and when to run queries concurrently and how to
share cluster resources among them.

Regarding multiway query types, our cost model considers only the estimation
of chain queries. Clique queries have distinct predicate checking costs due to the non-
transitivity of spatial operators and should be considered in a complete query optimizer
for multiway queries. Bushy queries can be decomposed into a set of chain and clique
sub-queries. The modification required is limited to the cost model and the execution
engine. The other proposed methods do not require modifications in this regard. Further,
we concentrated our efforts on proposing a cost model for the intersection predicate. Other
predicates should be considered to extend the applicability of the proposed model.

Furthermore, we focused on planning the query execution and implemented an
execution engine only to serve the purpose of experimenting with our methods. The
present engine does not allow for some requirements of distributed systems, such as fault-
tolerance, replication, security, etc. Implementing these requirements will not necessarily

8.3 Future Work 134

degrade the performance of our methods, as similar previously reported execution en-
gines implemented some of these requirements without a significant reduction in perfor-
mance [92].

In addition, some sources of processing costs are not represented in the proposed
models, such as operating system costs (which can interfere with the execution of a
query plan and increase its makespan). Although the most relevant costs for distributed
systems are considered in our models, there might be scenarios where other parameters
and variables should be considered. In these cases, the schedules we provided would have
to be adapted or extended. For instance, one such scenario arises when local costs incurred
because data partitions are stored on local disks. Also, the initial load of data from disks,
or the final storage of query results, may be relevant to consider in query costs.

Another limitation concerns the methods utilized to compute schedules for FM.
We reasoned in this thesis that the possibility of the existence of a polynomial time
algorithm to solve FM is remote, i.e., unless P=NP. To address this limitation, we have
investigated how fast and how well the optimum for FM can be approximated by exploring
methods that solve a simplified version of it (SM). Usually, the best schedules for the
SM instances that we tested were produced by the LR method. We explored how good
each such SM schedule is when it is considered as a schedule for the corresponding FM
instance. To this end, we applied exhaustive branch-and-bound (exact) algorithms to the
FM instance whenever it could be done in reasonable running time. Sometimes there was
a significant difference between the two schedules, implying there is room for improving
the scheduling process even further.

In the next section, we suggest future work that could be carried out to address
these limitations and discuss other potential improvements to our proposed models and
methods.

8.3 Future Work
We see several promising directions for future work on multiway spatial join

query optimization and execution in distributed systems. We indicate in the following
possible enhancements to the performance and applicability of the models and methods
proposed in this thesis.

It is well-known that dealing with the scheduling of tasks at the intra-operator
level requires the use of a very accurate and detailed cost model [65]. In this regard,
two main sources of imprecision in our proposed cost model should be addressed: (𝑎)
imprecision caused by naturally co-located events that increase the chance of intersections
between two datasets, and (𝑏) the divergence between the uniformity assumption in the
proposed formulae and the spatial data itself. For (𝑎), specifying a metadata field for

8.3 Future Work 135

indicating the expected probability of an intersection can be of help. However, this requires
prior knowledge about the dataset and about the join itself, not related to each dataset
in particular. Another strategy to investigate is the use of query hints to improve cost
estimation, a strategy already used in some traditional DBMSs for scalar data [11]. For (𝑏),
other metadata fields should be investigated in order to capture more information about
the location skew of spatial objects inside each histogram cell.

Other sources of imprecision exist in the cost model, regarding the construction
of multidimensional grid histograms, such as the handling of the boundary effect by the
Proportional Overlap method. In this case, improved histogram construction techniques
can be employed. Two of which we are aware of are the MinSkew histogram [1] and
the improved version of Euler Histograms proposed in [81]. While investigating this
improvement, one should adapt these histograms to be used in data partitioning and as
a data access method for a distributed system.

Improvements to the cost model might help to reduce the unbalance that is
sometimes experienced during the execution of large queries, despite the efficiency of our
proposed methods. We believe this should be the preferred way to aid the unbalance as it is
compatiblewith the reduction of the query resource consumption. However, as imprecision
in a cost model is inevitable to some degree, to further reduce unbalanced execution, a
runtime load-balancing mechanism could be considered at the end of query execution.
That is, tasks from over-used machines can be reassigned to underused machines. This
strategy will usually result in a more balanced execution, at the expense of an increase in
network usage at the end of the plan execution. Regarding system throughput, it would be
interesting to study how to identify the cost of processing the remaining load of a query
and consider it in the scheduling of the next load by means of the 𝑢𝑖 parameter that features
in our proposed models.

Investigating techniques to amortize the footprint of the LR method may be
worthwhile. A simple option is to cache and reuse the execution plan after the query
optimization, a common strategy used for repetitive or stored queries in DBMSs [37].
More interestingly however, is the parallelization of LR by splitting the execution of the
𝑚 Knapsack instances in each iteration.

Finally, and perhaps most importantly, the development of approximate methods
to solve FM should be considered. Although the schedule computed for SM can be used
to execute a query, it presents a gap in the communication cost, when compared with
optimal schedules for FM, indicating that there is room for further improvement of the
query schedule. However, recalling the prohibitive time to compute the schedule for only
the root node, even simple Linear Relaxation cannot be directly applied in a reasonable
time. Thus, more research is needed to discover an exploitable structure of FM, so that
Lagrangian Relaxation or other techniques can be applied to solve FM directly.

Bibliography

[1] Acharya, S.; Poosala, V.; Ramaswamy, S. Selectivity Estimation in Spa-
tial Databases. SIGMOD Record, 28(2):13–24, 1999.

[2] Aji, A.; Wang, F.; Saltz, J. H. Towards Building a High Performance Spa-
tial Query System for Large Scale Medical Imaging Data. In: Proceedings
of the ACM International Symposium on Advances in Geographic Information
Systems, p. 309–318, Redondo Beach, CA, USA, 2012.

[3] Aji, A.; Wang, F.; Vo, H.; Lee, R.; Liu, Q.; Zhang, X.; Saltz, J. Hadoop GIS:
A High Performance Spatial Data Warehousing System over Mapre-
duce. Proceedings of the VLDB Endowment, 6(11):1009–1020, 2013.

[4] Angel, E.; Bampis, E.; Kononov, A. Algorithms - ESA 2001, volume 2161 in
Lecture Notes in Computer Science, chapter A FPTAS for Approximating
the Unrelated Parallel Machines Scheduling Problem with Costs, p. 194–205.
Springer, 2001.

[5] Bazaraa, M. S.; Jarvis, J. J.; Sherali, H. D. Linear Programming and
Network Flows. Wiley, 4th edition, 2009.

[6] Bertsimas, D.; Tsitsiklis, J. Introduction to linear programming, vol-
ume 1. Athena Scientific, p. 267, 1997.

[7] Bittorf, M.; Bobrovytsky, T.; Erickson, C. C. A. C. J.; Hecht, M. G. D.;
Kuff, M. J. I. J. L.; Leblang, D. K. A.; Robinson, N. L. I. P. H.; Rus, D. R. S.;
Wanderman, J. R. D. T. S.; Yoder, M. M. Impala: A modern, open-source
SQL engine for Hadoop. In: Proceedings of the 7th Biennial Conference on
Innovative Data Systems Research, p. 1–10, Asilomar, CA, USA, 2015.

[8] Blair, C. Advances in Sensitivity Analysis and Parametric Program-
ming, volume 6 in International Series in Operations Research & Man-
agement Science, chapter Integer and Mixed-Integer Programming, p. 9.1–
9.25. Springer US, 1st edition, 1997.

Bibliography 137

[9] Brinkhoff, T.; Kriegel, H. P.; Seeger, B. Efficient Processing of Spatial
Joins Using R-trees. SIGMOD Record, 22(2):237–246, 1993.

[10] Brinkhoff, T.; Kriegel, H.-P.; Seeger, B. Parallel Processing of Spatial
Joins Using R-trees. In: Proceedings of the IEEE International Conference
on Data Engineering, p. 258–265, New Orleans, LA, USA, 1996.

[11] Bruno, N.; Chaudhuri, S.; Ramamurthy, R. Power Hints for Query
Optimization. In: Proceedings of the IEEE International Conference on Data
Engineering, p. 469–480, Shanghai, China, 2009.

[12] Campbell, J. E.; Shin, M. Geographic Information Systems Basics. CRC
Press, 2001.

[13] Carey, M. J.; Lu, H. Load Balancing in a Locally Distributed DB System.
SIGMOD Record, 15(2), 1986.

[14] Chung, W.; Park, S.-Y.; Bae, H.-Y. Embedded Software and Systems,
volume 3605 in Lecture Notes in Computer Science, chapter Efficient Par-
allel Spatial Join Processing Method in a Shared-Nothing Database Cluster
System, p. 81–87. Springer, 2005.

[15] Conforti, M.; Cornuéjols, G.; Zambelli, G. Integer Programming, vol-
ume 271 in Graduate Texts in Mathematics. Springer, 2014.

[16] Cormode, G.; Garofalakis, M.; Haas, P. J.; Jermaine, C. Synopses for
Massive Data: Samples, Histograms, Wavelets, Sketches. Foundations
and Trends in Databases, 4(1-3):1–294, 2012.

[17] Corral, A.; Manolopoulos, Y.; Theodoridis, Y.; Vassilakopoulos, M.
Multi-Way Distance Join Queries in Spatial Databases. GeoInformatica,
8(4):373–402, 2004.

[18] Cunha, A. R.; de Oliveira, S. S. T.; Aleixo, E. L.; de C. Cardoso, M.;
de Oliveira, T. B.; do Sacramento Rodrigues, V. J. Processamento
Distribuído da Junção Espacial de Múltiplas Bases de Dados - Multi-
way Spatial Join. In: Anais do XXXIII Simpósio Brasileiro de Redes de
Computadores e Sistemas Distribuídos, p. 165–178, Vitória, ES, Brazil, 2015.

[19] De Berg, M.; Cheong, O.; Van Kreveld, M.; Overmars, M. Computational
Geometry: Algorithms and Applications. Springer, 3rd edition, 2008.

Bibliography 138

[20] de Oliveira, S. S. T.; do Sacramento Rodrigues, V. J.; Cunha, A. R.;
Aleixo, E. L.; de Oliveira, T. B.; de C. Cardoso, M.; Junior, R. R. Proces-
samento Distribuído de Operações de Junção Espacial com Bases de
Dados Dinâmicas para Análise de Informações Geográficas. In: Anais
do XXXI Simpósio Brasileiro de Redes de Computadores e Sistemas Dis-
tribuídos, p. 1009–1022, Brasília, Brazil, 2013.

[21] de Oliveira, T. B.; Costa, F. M.; Rodrigues, V. J. S. Definição de Planos
de Execução Distribuídos para Consultas de Junção Espacial usando
Histogramas Multidimensionais. In: Proceedings of the Brazilian Sympo-
sium on Databases, p. 89–100, Petrópolis, RJ, Brazil, 2015.

[22] de Oliveira, T. B.; Costa, F. M.; Rodrigues, V. J. S. Distributed Exe-
cution Plans for Multiway Spatial Join Queries using Multidimensional
Histograms. Journal of Information and Data Management, 7(3):199–214,
2017.

[23] de Oliveira, T. B.; do Sacramento Rodrigues, V. J.; de Oliveira, S. S. T.;
de Albuquerque Lima, P. I.; de C. Cardoso, M. DSI-RTree - Um Índice R-
Tree Escalável Distribuído. In: Anais do XXIX Simpósio Brasileiro de Redes
de Computadores e Sistemas Distribuídos, p. 719–732, Campo Grande, MS,
Brazil, 2011.

[24] Dean, J.; Ghemawat, S. MapReduce: Simplified Data Processing on
Large Clusters. Communications of the ACM, 51(1):107–113, 2008.

[25] Dittrich, J.-P.; Seeger, B. Data Redundancy and Duplicate Detection
in Spatial Join Processing. In: Proceedings of the IEEE International
Conference on Data Engineering, p. 535–546, San Diego, CA, USA, 2000.

[26] Doulkeridis, C.; Nørvåg, K. A Survey of Large-scale Analytical Query
Processing in MapReduce. The VLDB Journal, 23(3):355–380, 2014.

[27] Du, Z.; Zhao, X.; Ye, X.; Zhou, J.; Zhang, F.; Liu, R. An Effective High-
Performance Multiway Spatial Join Algorithm with Spark. ISPRS Inter-
national Journal of Geo-Information, 6(4), 2017.

[28] Eldawy, A.; Mokbel, M. F. SpatialHadoop: A MapReduce framework for
spatial data. In: Proceedings of the IEEE International Conference on Data
Engineering, p. 1352–1363, Seoul, South Korea, 2015.

[29] Eldawy, A.; Mokbel, M. F. The Era of Big Spatial Data: A Survey.
Foundations and Trends in Databases, 6(3-4):163–273, 2016.

Bibliography 139

[30] Eldawy, A.; Sabek, I.; Elganainy, M.; Bakeer, A.; Abdelmotaleb, A.; Mok-
bel, M. F. Advances in Spatial and Temporal Databases, volume 10411
in Lecture Notes in Computer Science, chapter Sphinx: Empowering Im-
pala for Efficient Execution of SQL Queries on Big Spatial Data, p. 65–83.
Springer, 2017.

[31] Evrendilek, C.; Dogac, A.; Nural, S.; Ozcan, F. Multidatabase Query
Optimization. Distributed and Parallel Databases, 5(1):77–114, 1997.

[32] Fisher, M. L. The Lagrangian Relaxation Method for Solving Integer
Programming Problems. Management Science, 50(12 Supplement):1861–
1871, 2004.

[33] Fornari, M.; Comba, J. L. D.; Iochpe, C. Advances in Geoinformat-
ics, chapter A Rule-Based Optimizer for Spatial Join Algorithms, p. 73–90.
Springer, 2007.

[34] Fornari, M. R.; Comba, J. L. D.; Iochpe, C. Query Optimizer for Spatial
Join Operations. In: Proceedings of the ACM International Symposium on
Advances in Geographic Information Systems, p. 219–226, Arlington, Va,
USA, 2006.

[35] Garey, M.; Johnson, D. Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman, 1979.

[36] Geoffrion, A.; Nauss, R. Exceptional Paper – Parametric and Postop-
timality Analysis in Integer Linear Programming. Management Science,
23(5):453–466, 1977.

[37] Graefe, G. Query Evaluation Techniques for Large Databases. ACM
Computing Surveys, 25(2):73–169, 1993.

[38] Gupta, H.; Chawda, B. Web Information Systems Engineering, vol-
ume 8787 in Lecture Notes in Computer Science, chapter 𝜖-Controlled-
Replicate: An Improved Controlled-Replicate Algorithm for Multi-way Spatial
Join Processing on Map-Reduce, p. 278–293. Springer, 2014.

[39] Gupta, H.; Chawda, B.; Negi, S.; Faruquie, T. A.; Subramaniam, L. V.; Mo-
hania, M. Processing Multi-way Spatial Joins on Map-reduce. In: Pro-
ceedings of the International Conference on Extending Database Technol-
ogy, p. 113–124, Genoa, Italy, 2013.

Bibliography 140

[40] Güting, R. H.; Behr, T.; Düntgen, C. SECONDO: A Platform for Mov-
ing Objects Database Research and for Publishing and Integrating Re-
search Implementations. icdebulletin, 33(2):56–63, 2010.

[41] Hall, J. A. J. Towards a Practical Parallelisation of the Simplex Method.
Computational Management Science, 7(2):139–170, 2010.

[42] Held, M.; Karp, R. M. The traveling-salesman problem and minimum
spanning trees: Part II. Mathematical programming, 1(1):6–25, 1971.

[43] Hormann, K.; Agathos, A. The Point in Polygon Problem for Arbitrary
Polygons. Computational Geometry, 20(3):131–144, 2001.

[44] Ibaraki, T.; Kameda, T. On the Optimal Nesting Order for Computing N-
relational Joins. ACM Transactions on Database Systems, 9(3):482–502,
1984.

[45] Ioannidis, Y. E.; Kang, Y. Randomized Algorithms for Optimizing Large
Join Queries. SIGMOD Record, 19(2):312–321, 1990.

[46] Jacox, E. H.; Samet, H. Spatial Join Techniques. ACM Transactions on
Database Systems, 32(1):1–44, 2007.

[47] Knuth, D. E. The Art of Computer Programming, volume 2: Seminumeri-
cal Algorithms. Addison-Wesley, p. 232, 3rd edition, 1998.

[48] Kossmann, D. The State of the Art in Distributed Query Processing. ACM
Computing Surveys, 32(4):422–469, 2000.

[49] Kwon, Y.; Balazinska, M.; Howe, B.; Rolia, J. SkewTune: Mitigating
Skew in Mapreduce Applications. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data, p. 25–36, Scottsdale,
Arizona, USA, 2012.

[50] Lakshman, A.; Malik, P. Cassandra: a decentralized structured storage
system. ACM SIGOPS Operating Systems Review, 44(2):35–40, 2010.

[51] Lawler, E. L.; Lenstra, J. K.; Kan, A. H. R.; Shmoys, D. B. Sequencing
and scheduling: Algorithms and complexity. Handbooks in operations
research and management science, 4:445–522, 1993.

[52] Lenstra, J. K.; Shmoys, D. B.; Tardos, É. Approximation Algorithms
for Scheduling Unrelated Parallel Machines. Mathematical Programming,
46(1-3):259–271, 1990.

Bibliography 141

[53] Lo, M.-L.; Ravishankar, C. V. Spatial Hash-Joins. SIGMOD Record,
25(2):247–258, 1996.

[54] Longley, P. A.; Goodchild, M. F.; Maguire, D. J.; Rhind, D. W. Geographic
Information Systems and Science. Wiley, 2nd edition, 2005.

[55] Mamoulis, N.; Papadias, D. Integration of Spatial Join Algorithms for
Processing Multiple Inputs. SIGMOD Record, 28(2):1–12, 1999.

[56] Mamoulis, N.; Papadias, D. Advances in Spatial and Temporal
Databases, volume 2121 in Lecture Notes in Computer Science, chap-
ter Selectivity Estimation of Complex Spatial Queries, p. 155–174. Springer,
2001.

[57] Mamoulis, N.; Papadias, D. Multiway Spatial Joins. ACM Transactions on
Database Systems, 26(4):424–475, 2001.

[58] Mishra, P.; Eich, M. H. Join Processing in Relational Databases. ACM
Computing Surveys, 24(1):63–113, 1992.

[59] Morrison, J. L. Elements of Spatial Data Quality, chapter Spatial Data
Quality, p. 1–12. Elsevier, New York, 1995.

[60] Moseley, B.; Dasgupta, A.; Kumar, R.; Sarlós, T. On scheduling in
map-reduce and flow-shops. In: Proceedings of the ACM Symposium on
Parallelism in Algorithms and Architectures, p. 289–298, San Jose, CA, USA,
2011.

[61] Mutenda, L.; Kitsuregawa, M. Parallel R-tree Spatial Join for a Shared-
Nothing Architecture. In: Proceedings of the International Symposium on
Database Applications in Non-Traditional Environments, p. 423–430, Kyoto,
Japan, 1999.

[62] Naughton, J.; Ellmann, C. A non-blocking parallel spatial join algorithm.
In: Proceedings of the IEEE International Conference on Data Engineering,
p. 697–705, San Jose, CA, USA, 2002.

[63] Nidzwetzki, J. K.; Güting, R. H. Distributed SECONDO: An Extensible
and Scalable Database Management System. Distributed and Parallel
Databases, p. 1–52, 2017.

[64] Noltemeier, H. Sensitivitätsanalyse bei diskreten linearen Opti-
mierungsproblemen, volume 30. Springer-Verlag, 2013.

Bibliography 142

[65] Özsu, M. T.; Valduriez, P. Principles of Distributed Database Systems.
Springer, p. 245–293, 3rd edition, 2011.

[66] Pang, H.; Carey, M. J.; Livny, M. Multiclass Query Scheduling in Real-
time Database Systems. IEEE Transactions on Knowledge and Data Engi-
neering, 7(4):533–551, 1995.

[67] Papadias, D.; Mamoulis, N.; Theodoridis, Y. Constraint-Based Process-
ing of Multiway Spatial Joins. Algorithmica, 30(2):188–215, 2001.

[68] Papadias, D.; Mamoulis, N.; Theodoridis, Y. Processing and Optimiza-
tion of Multiway Spatial Joins Using R-trees. In: Proceedings of the ACM
Symposium on Principles of Database Systems, p. 44–55, Philadephia, PA,
USA, 1999.

[69] Patel, J. M.; DeWitt, D. J. Partition Based Spatial-Merge Join. SIGMOD
Record, 25(2):259–270, 1996.

[70] Patel, J. M.; DeWitt, D. J. Clone Join and Shadow Join: Two Parallel
Spatial Join Algorithms. In: Proceedings of the ACM International Sympo-
sium on Advances in Geographic Information Systems, p. 56–61, McLean,
VA, USA, 2000.

[71] Pavlo, A.; Paulson, E.; Rasin, A.; Abadi, D. J.; DeWitt, D. J.; Madden,
S.; Stonebraker, M. A Comparison of Approaches to Large-scale Data
Analysis. In: Proceedings of the ACM SIGMOD International Conference on
Management of Data, p. 165–178, Providence, Rhode Island, USA, 2009.

[72] Pisinger, D. A Minimal Algorithm for the 0-1 Knapsack Problem. Oper-
ations Research, 45(5):758–767, 1997.

[73] Ray, S.; Simion, B.; Brown, A. D.; Johnson, R. Skew-resistant Parallel
In-memory Spatial Join. In: Proceedings of the International Conference
on Scientific and Statistical Databases Management, p. 1–12, Aalborg, Den-
mark, 2014.

[74] Rigaux, P.; Scholl, M.; Voisard, A. Spatial Databases: With Application
to GIS. The Morgan Kaufmann Series in Data Management Systems.
Elsevier Science, 2001.

[75] Roh, Y. J.; Kim, J. H.; Chung, Y. D.; Son, J. H.; Kim, M. H. Hierarchically
Organized Skew-tolerant Histograms for Geographic Data Objects. In:

Bibliography 143

Proceedings of the ACM SIGMOD International Conference on Management
of Data, p. 627–638, Indianapolis, IN, USA, 2010.

[76] Shchepin, E. V.; Vakhania, N. An Optimal Rounding Gives a Better Ap-
proximation for Scheduling Unrelated Machines. Operations Research
Letters, 33(2):127–133, 2005.

[77] Shi, W.; Fisher, P.; Goodchild, M. F. Spatial Data Quality. CRC Press,
2003.

[78] Shmoys, D. B.; Tardos, É. An Approximation Algorithm for the General-
ized Assignment Problem. Mathematical Programming, 62(1-3):461–474,
1993.

[79] Sivasubramaniam, A. Selectivity Estimation for Spatial Joins. In: Pro-
ceedings of the IEEE International Conference on Data Engineering, p. 368–
375, Berlin, Heidelberg, Germany, 2001.

[80] Stonebraker, M.; Abadi, D.; DeWitt, D. J.; Madden, S.; Paulson, E.;
Pavlo, A.; Rasin, A. MapReduce and parallel DBMSs: friends or foes?
Communications of the ACM, 53(1):64–71, 2010.

[81] Sun, C.; Agrawal, D.; Abbadi, A. E. Advances in Database Technology,
chapter Selectivity Estimation for Spatial Joins with Geometric Selections, p.
609–626. Springer Berlin Heidelberg, Berlin, Heidelberg, 2002.

[82] Theodoridis, Y.; Sellis, T. A Model for the Prediction of R-tree Perfor-
mance. In: Proceedings of the ACM Symposium on Principles of Database
Systems, p. 161–171, Montreal, Quebec, Canada, 1996.

[83] Theodoridis, Y.; Stefanakis, E.; Sellis, T. Cost Models for Join Queries
in Spatial Databases. In: Proceedings of the IEEE International Conference
on Data Engineering, p. 476–483, Orlando, Florida, USA, 1998.

[84] Trott, M. The Area of a Random Triangle. Mathematica Journal, 7(2):189–
198, 1998.

[85] Vazirani, V. V. Approximation Algorithms. Springer Science & Business
Media, 2001.

[86] Verma, A.; Cherkasova, L.; Campbell, R. H. Two Sides of a Coin: Op-
timizing the Schedule of Mapreduce Jobs to Minimize their Makespan
and Improve Cluster Performance. In: Proceedings of IEEE International

Bibliography 144

Symposium on Modeling, Analysis & Simulation of Computer and Telecom-
munication Systems (MASCOTS), p. 11–18, Washington, DC, USA, 2012.

[87] Williamson, D. P.; Shmoys, D. B. The Design of Approximation Algo-
rithms. Cambridge University Press, 2011.

[88] Xie, D.; Li, F.; Yao, B.; Li, G.; Zhou, L.; Guo, M. Simba: Efficient In-memory
Spatial Analytics. In: Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, p. 1071–1085, San Francisco, CA, USA,
2016.

[89] You, S.; Zhang, J.; Gruenwald, L. Spatial Join Query Processing in
Cloud: Analyzing Design Choices and Performance Comparisons. In:
Proceedings of the 44th International Conference on Parallel Processing
Workshops, p. 90–97, Beijing, China, 2015.

[90] Yu, C. T.; Chang, C. Distributed Query Processing. ACM Computing
Surveys, 16(4):399–433, 1984.

[91] Yu, J.; Wu, J.; Sarwat, M. GeoSpark: A Cluster Computing Framework
for Processing Large-scale Spatial Data. In: Proceedings of the SIGSPA-
TIAL International Conference on Advances in Geographic Information Sys-
tems, p. 70:1–70:4, Bellevue, WA, USA, 2015.

[92] Zaharia, M.; Xin, R. S.; Wendell, P.; Das, T.; Armbrust, M.; Dave, A.; Meng,
X.; Rosen, J.; Venkataraman, S.; Franklin, M. J.; others. Apache Spark:
A Unified Engine for Big Data Processing. Communications of the ACM,
59(11):56–65, 2016.

[93] Zhang, S.; Han, J.; Liu, Z.; Wang, K.; Xu, Z. SJMR: Parallelizing Spatial
Join with Mapreduce on Clusters. In: Proceedings of the IEEE International
Conference on Cluster Computing and Workshops, p. 1–8, New Orleans, LA,
USA, 2009.

[94] Zhong, Y.; Han, J.; Zhang, T.; Li, Z.; Fang, J.; Chen, G. Towards Parallel
Spatial Query Processing for Big Spatial Data. In: Proceedings of the
International Parallel and Distributed Processing Symposium Workshops &
PhD Forum, p. 2085–2094, Shanghai, China, 2012.

APPENDIX A
Detailed Results for Schedule Methods

This appendix presents additional material referred to in Chapter 4. Section A.1
present the values of 𝑓 used when performing the experiments with the 𝐽 and 𝑀 queries.
Section A.2 presents the complete set of plots for the characterization of the queries,
regarding the communication cost and the makespan of the queries. Finally, Section A.3
presents two tables reporting the total execution time required by each scheduling method
proposed in this thesis.

A.1 Challenging Values of 𝑓
Tables A.1 and A.2 present the challenging values of 𝑓 , which require schedules

that balance communication cost and makespan, for each query studied and number of
machines 𝑚 used in the experiments presented in Chapter 4.

Table A.1: Challenging values of 𝑓 used for join queries 𝐽 .
Query 𝑚=4 𝑚=8 𝑚=16 𝑚=32 𝑚=64 Query 𝑚=4 𝑚=8 𝑚=16 𝑚=32 𝑚=64
𝐽1 1.14 2.45 5.16 10.75 21.79 𝐽11 0.15 0.35 0.75 1.58 3.20
𝐽2 0.84 1.87 3.99 8.14 17.26 𝐽12 0.39 0.89 1.87 3.91 7.65
𝐽3 0.48 1.55 3.76 13.27 38.01 𝐽13 0.76 1.67 3.48 7.11 14.46
𝐽4 0.63 3.53 7.54 21.33 51.39 𝐽14 1.29 2.85 6.04 12.80 26.57
𝐽5 0.59 1.40 3.00 6.17 12.66 𝐽15 0.89 1.94 4.04 8.57 16.40
𝐽6 0.53 1.19 2.80 7.22 16.95 𝐽16 1.15 2.49 5.19 10.38 21.67
𝐽7 0.34 0.87 1.83 7.65 30.12 𝐽17 1.54 3.36 7.12 14.96 30.00
𝐽8 0.74 1.65 3.72 8.83 20.67 𝐽18 1.30 2.85 5.96 11.88 24.80
𝐽9 0.52 1.29 2.89 9.52 32.37 𝐽19 1.59 3.49 7.48 15.64 32.28
𝐽10 1.02 2.29 5.39 11.03 12.99 𝐽20 0.99 2.21 4.74 9.89 20.86

Table A.2: Challenging values of 𝑓 for multiway queries 𝑀
Query 𝑚=4 𝑚=8 𝑚=16 𝑚=32 𝑚=64 Query 𝑚=4 𝑚=8 𝑚=16 𝑚=32 𝑚=64
𝑀1.1 1.18 2.82 5.41 8.73 9.17 𝑀4.2 1.27 2.68 6.42 12.56 11.61
𝑀1.2 1.94 4.28 8.38 6.47 5.65 𝑀4.3 6.74 17.14 32.56 64.25 117.39
𝑀1.3 6.44 13.87 30.32 55.19 53.79 𝑀5.1 3.93 8.90 18.31 31.45 33.28
𝑀2.1 0.74 1.66 3.44 7.00 14.93 𝑀5.2 3.48 6.30 6.92 7.82 7.90
𝑀2.2 5.82 12.70 26.62 55.77 114.00 𝑀5.3 5.83 13.13 27.83 54.18 50.15
𝑀3.1 1.43 3.14 6.54 13.41 26.39 𝑀6.1 2.61 5.75 12.17 24.91 51.54
𝑀3.2 3.70 8.33 17.41 36.70 72.90 𝑀6.2 3.25 7.24 15.31 32.00 63.98
𝑀4.1 1.38 3.33 7.09 13.98 27.23 𝑀6.3 4.31 9.91 20.36 42.25 86.29

Appendix A 146

A.2 Characteristics of Schedules Computed
Figures A.1 and A.2 present a series of plots for each query tested, depicting

the characteristics of schedules generated by GR, LP, and LR, with 𝑚 = 64 and 𝑓 = 0,
𝑓 = 100.000, and a challenging value of 𝑓 that makes the contribution of makespan
and communication cost about the same on 𝑍𝑆𝑀 . The points in the top-left, bottom-
right, and bottom-left, represent the schedule with the minimum communication cost,
minimum makespan, and balanced makespan and communication cost using the values
of 𝑓 presented in Tables A.1 and A.2, respectively. The evaluation of these plots was
presented in Section 4.11.1.

28.9 29 29.1 29.2
3

3.5

4
⋅105

𝑥 0

𝑀1.1

1.33 1.34 1.35
2.34
2.36
2.38

2.4
⋅104

𝑀1.2

90 100 110
2

4

6
⋅105

𝑀1.3

200 300 400
1.5

2

2.5
⋅106

𝑥 0

𝑀2.1

3000 3500 4000
3

4

5
⋅106

𝑀2.2

1200 1400 1600 1800
5
6
7
8

⋅106

𝑥 0

𝑀3.1

100 120 140
1.5

2

2.5

⋅105

𝑀3.2

70 80 90

3
4
5

⋅105

𝑥 0

𝑀4.1

4 5 6 7
0.5

1

1.5
⋅105

𝑀4.2

90 100 110 120
1

2

3
⋅105

𝑀4.3

18.04 18.06 18.08 18.1
5.5

6
6.5

7
⋅104

𝑥 0

𝑀5.1

146.6 146.8 147

1.85
1.9

1.95
⋅106

𝑀5.2

100 120 140
0.2
0.4
0.6
0.8

1
⋅106

𝑀5.3

5000 6000 7000
1

1.2
1.4

⋅107

Comm (MB)

𝑥 0

𝑀6.1

1000 1200 1400 1600
1.8

2
2.2
2.4

⋅106

Comm (MB)

𝑀6.2

100 120 140

1.5
2

2.5
⋅105

Comm (MB)

𝑀6.3

LP GR LR

Figure A.1: Schedule costs for tested instances using distinct values
of 𝑓 for each step of queries from 𝑀1 to 𝑀6.

Appendix A 147

150 200 250 300
2

3

4
⋅105

𝑥 0

𝐽1

100 150 200
1.5

2

2.5
⋅105

𝐽2

0 2000 4000 6000 8000
0.5

1
1.5

2

⋅107

𝐽3

0 2000 4000 6000
0

2

4

6
⋅107

𝑥 0

𝐽4

200 250 300
5

6

7

⋅105

𝐽5

2000 4000

0.5

1

1.5
⋅107

𝐽6

2000 4000

0.5

1

1.5

⋅107

𝑥 0

𝐽7

500 1000 1500 2000

2

4

6

⋅106

𝐽8

500 1000 1500

2

4

6

⋅106

𝐽9

110 115 120 125

0.4
0.6
0.8

1
⋅106

𝑥 0

𝐽10

200 300 400
1.5

2

2.5

⋅106

𝐽11

1200 1400 1600 1800
5
6
7
8

⋅106

𝐽12

5000 6000 7000
1

1.2

1.4

⋅107

𝑥 0

𝐽13

3000 3500 4000

4

5

6

⋅106

𝐽14

400 500 600

0.8
1

1.2

⋅106

𝐽15

2500 3000 3500

4

6

8
⋅106

𝑥 0

𝐽16

2500 3000 3500

3
4
5
6

⋅106

𝐽17

4000 5000 6000

6
7
8
9

⋅106

𝐽18

2500 3000 3500

3

4

5
⋅106

Comm (MB)

𝑥 0

𝐽19

3000 3500 4000 4500

6

8

⋅106

Comm (MB)

𝐽20

GR LP LR

Figure A.2: Schedule costs for tested instances using distinct values
of 𝑓 for queries 𝐽1 to 𝐽20.

Appendix A 148

A.3 Execution Times of GR, LP and LR for all Queries
Tables A.3 and A.4 present the execution time required to produce a schedule

by GR, LP, and LR for each query 𝐽 and 𝑀 . A more comprehensive evaluation of these
values was presented in Section 4.11.3.

Table A.3: Execution times to produce a schedule using GR, LP
and LR for 𝑚 = 4, 8, and 16. Values are in milliseconds.

Query m = 4 m = 8 m = 16

GR LP LR GR LP LR GR LP LR
𝐽1 3 87 1968 5 172 3707 7 426 5476
𝐽2 3 84 1676 4 172 3377 7 845 6127
𝐽3 3 67 341 4 138 787 6 940 1031
𝐽4 3 63 326 4 1465 3114 6 1554 6935
𝐽5 3 77 2127 4 140 1980 6 363 4924
𝐽6 3 73 1662 4 131 2934 6 356 4712
𝐽7 3 64 1436 4 157 3519 6 481 5775
𝐽8 1 18 925 1 35 1745 1 88 3048
𝐽9 1 17 741 1 38 1410 2 96 3244
𝐽10 0 1 902 0 2 1706 0 4 3010
𝐽11 2 53 1453 3 106 2543 5 226 5192
𝐽12 4 133 2845 6 206 4227 10 457 7645
𝐽13 4 110 2628 6 214 4029 9 521 7024
𝐽14 3 70 1728 4 151 3789 6 284 6141
𝐽15 2 47 1382 2 92 2216 4 195 4650
𝐽16 2 46 1358 2 88 1223 4 186 2452
𝐽17 2 41 693 2 84 1292 3 173 2414
𝐽18 4 100 1614 5 186 2681 8 361 6424
𝐽19 2 59 1005 3 113 1571 5 258 5961
𝐽20 2 47 1399 3 88 1613 4 204 4894
𝑀1.1 0 2 96 0 3 237 0 4 504
𝑀1.2 0 1 61 0 2 99 0 2 194
𝑀1.3 0 1 71 0 2 98 0 3 168
𝑀2.1 2 56 1012 3 101 1930 5 234 2956
𝑀2.2 2 58 1260 3 100 1665 5 240 3318
𝑀3.1 4 123 2323 6 231 3721 10 445 6487
𝑀3.2 2 60 1040 3 111 1858 5 250 2759
𝑀4.1 0 4 105 0 8 332 0 19 826
𝑀4.2 0 2 141 0 4 219 0 9 370
𝑀4.3 0 2 36 0 4 79 0 7 214
𝑀5.1 0 1 79 0 2 143 0 3 315
𝑀5.2 0 1 93 0 2 155 0 3 114
𝑀5.3 0 1 54 0 2 148 0 4 211
𝑀6.1 4 111 2020 5 215 3213 10 529 5659
𝑀6.2 4 119 2513 5 220 3303 10 473 5440
𝑀6.3 2 56 1064 3 115 1467 5 239 2605

Appendix A 149

Table A.4: Execution times to produce a schedule using GR, LP
and LR for 𝑚 = 32 and 64. Values are in milliseconds.

Query m = 32 m = 64

GR LP LR GR LP LR
𝐽1 9 1230 12249 13 3523 13589
𝐽2 9 1255 8119 12 6265 21971
𝐽3 8 4785 11281 11 12960 30409
𝐽4 8 3183 28915 11 7396 43145
𝐽5 8 933 6071 11 2541 23928
𝐽6 7 1842 9419 10 7494 12184
𝐽7 8 2595 10993 11 14909 22766
𝐽8 2 417 5592 3 848 13517
𝐽9 2 540 2052 3 1031 3822
𝐽10 0 9 243 0 24 145
𝐽11 6 564 9615 8 2126 28335
𝐽12 12 1265 15771 17 3202 34902
𝐽13 12 1209 15252 15 3432 27108
𝐽14 8 874 11557 11 2906 20745
𝐽15 5 461 10407 7 1409 19719
𝐽16 5 473 7807 7 1767 19017
𝐽17 5 498 8188 6 1389 15535
𝐽18 10 1171 7951 13 2880 16041
𝐽19 6 706 11487 8 1930 19732
𝐽20 6 619 11479 8 2462 18071
𝑀1.1 0 9 360 0 24 2067
𝑀1.2 0 4 66 0 7 2559
𝑀1.3 0 6 266 0 14 125
𝑀2.1 6 537 8137 8 1444 16889
𝑀2.2 6 681 5299 7 2442 9158
𝑀3.1 12 1175 11326 17 3179 18646
𝑀3.2 6 656 4873 8 1867 11137
𝑀4.1 1 42 1273 1 111 1894
𝑀4.2 0 17 357 0 56 1736
𝑀4.3 0 18 5754 0 51 1481
𝑀5.1 0 8 327 0 20 647
𝑀5.2 0 6 222 0 17 251
𝑀5.3 0 7 339 0 26 999
𝑀6.1 12 1249 10111 16 3549 18187
𝑀6.2 11 1110 12034 15 2962 19981
𝑀6.3 6 586 5700 7 1826 9810

APPENDIX B
A Complete Example of Parametric Analysis

In this appendix, we illustrate the complete parametric analysis (PA) process
applied to a non-trivial SM instance (𝑀𝑝𝑎), which is a modified version of a practical
multiway spatial join query. We changed the values of the processing and communication
costs to improve the illustration of the process. The instance has integer 𝑤𝑗’s and 𝑐𝑖𝑗’s,
𝑛 = 69 jobs, 𝑚 = 16 machines, and 𝑢𝑖 = 0, 𝑖 = 1, … , 16. Table B.3 presents the values
of each parameter of this instance. For the sake of completeness, we restate here the first
iteration of the process, also described in Chapter 5.

B.1 Finding Bounds for PA
In this section, we identify the range of 𝑓 to which we shall apply the PA process.

The upper bound (UB) of the makespan 𝑥𝑈𝐵
0 is obtained by setting 𝑓 = 0 and solving

SM0 to identify a feasible schedule. As was observed in Chapter 5, SM0 can be solved
to optimality by greedily assigning each job to its lowest cost processor. The result here
is a schedule with makespan 𝑥𝑈𝐵

0 = 35 and communication cost 7152. Using (5-1), we
identify the lowest possible makespan of any feasible schedule, 𝑥𝐿𝐵

0 :

𝑥𝐿𝐵
0 =

⌈
∑𝑛

𝑗=1 𝑤𝑗
𝑚 ⌉

= ⌈
362
16 ⌉ = 23.

To identify 𝑓 ′, the upper bound on 𝑓 for the PA, we solve the instances SM𝑞 for
𝑞 = 0, 1, 2, that is, for 𝑥0 = 23, 24, 25. The first feasible schedule occurs when 𝑞1 = 0, with
(𝑍∗, 𝑥∗

0, 𝐶∗) = (8597, 23, 7470), i.e., a total cost of 8597, a makespan of 𝑥0 = 𝑥𝐿𝐵
0 = 23,

and a communication cost of 7470.
The second feasible schedule occurs when 𝑞2 = 2, with (𝑍∗, 𝑥∗

0, 𝐶∗) = (8597,
25, 7372), a total cost of 8597, a makespan of 𝑥0 = 𝑥𝐿𝐵

0 + 2 = 25 and a communication
cost of 𝑍𝑞(2) = 7372. There is no feasible schedule for 𝑞 = 1, with makespan 𝑥0 = 24.

Appendix B 151

Using (5-3), we have that:

𝑓 ′ =
𝑍𝑞(𝑞1)–𝑍𝑞(𝑞2)

𝑞2–𝑞1
= 7470 − 7372

2 − 0 = 49.

Therefore, the feasible schedule with 𝑥0 = 23, communication cost 7470 and total
cost 23𝑓 +7470 is optimal for all 𝑓 ≥ 49. So, 𝑓 ′ is fixed at 49. As 𝑥𝐿𝐵

0 = 23 < 35 = 𝑥𝑈𝐵
0 ,

the proposed PA process is applied within the range 0 ≤ 𝑓 ≤ 49. The challenge is to find
optimal schedules, their total costs 𝑍∗(𝑓), makespans and communication costs, for each
piecewise segment in this range.

B.2 Starting the PA Process
For the sake of brevity, let us denote as (𝑍∗(𝑓𝑖), 𝑥𝑖

0, 𝐶𝑖) the values for a feasible
schedule obtained for 𝑓𝑖, where 𝑖 indicates the sequence of 𝑓 values investigated in the
course of PA process. For example, for the first value of 𝑓 below (𝑓1), we have (𝑍∗(𝑓𝑖),
𝑥𝑖

0, 𝐶𝑖) = (7152, 35, 7152).
Recall that for each iteration of the PA process we start with given feasible sched-

ules for two distinct given values of 𝑓 and compute an optimal schedule corresponding to
an intermediate value of 𝑓 . (Note, in some cases, the intermediate optimal schedule may
turn out to be identical with one of two given feasible schedules). The result of the first
iteration is presented in the following table. We already have two given (optimal) sched-
ules, corresponding to 𝑓1 = 0 and 𝑓2 = 49. The schedules are shown in the second
column of the table (𝑍∗(𝑓𝑖), 𝑥𝑖

0, 𝐶𝑖), and their respective points are in the third column
(𝑃 = (𝑓𝑖, 𝑍∗(𝑓𝑖))). The initial interval of uncertainty for 𝑍∗(𝑓) is the triangle 𝑃1𝑃4𝑃2,
depicted in Figure B.1A. By applying Proposition 5.7, we obtain UB(𝑓), and by using
Proposition 5.8, we get the LB(𝑓)’s. The intermediate value of 𝑓 (column interm. 𝑓) is
obtained using (5-4), and finally, by computing the optimal schedule for it, we can deter-
mine which case of Figure 5.2 is pertinant.

𝑓 (𝑍∗(𝑓𝑖), 𝑥𝑖
0, 𝐶𝑖) 𝑃 = (𝑓𝑖, 𝑍∗(𝑓𝑖)) UB(𝑓) LB(𝑓) interm. 𝑓

𝑓1 = 0 (7152, 35, 7152) 𝑃1(0, 7152) 35𝑓 + 7152 29.49𝑓 + 7152 𝑓3 = 22𝑓2 = 49 (8597, 25, 7372) 𝑃2(49, 8597) 25𝑓 + 7372

The optimal schedule for 𝑓3 is:

𝑓 (𝑍∗(𝑓𝑖), 𝑥𝑖
0, 𝐶𝑖) 𝑃 = (𝑓𝑖, 𝑍∗(𝑓𝑖)) UB(𝑓) LB(𝑓)

𝑓3 = 22 (7870, 32, 7166) 𝑃3(22, 7870) 32𝑓 + 7166 𝑃1𝑃3: 32.64𝑓 + 7152
𝑃3𝑃2: 26.92𝑓 + 7744

Appendix B 152

The optimal schedule for 𝑓3 provides a point 𝑃3 = (22, 7870) strictly between
𝑃4 and 𝑃5 (Figure B.1A), which corresponds to case (a) in Figure 5.2. Thus, by applying
Propositions 5.7 and 5.8, we define new upper and lower bounds to reduce the area of
uncertainty for 𝑍∗(𝑓), as illustrated in Figure B.1B. The area of uncertainty for 𝑍∗(𝑓) are
now the triangles 𝑃1𝑃6𝑃3 (Figure B.1C) and 𝑃3𝑃7𝑃2 (Figure B.1D).

The PA process continues recursively in the triangles 𝑃1𝑃6𝑃3 and 𝑃3𝑃7𝑃2 until,
with reference to Figure 5.2, case (b) occurs and a breakpoint is identified, or case (c)
occurs and there is no breakpoint in the particular range of 𝑓 at hand. For each iteration
of the method described in the following sections, we employed a breadth-first search of
𝑓 . These cases mentioned throught relate to those in Figure 5.2. To begin the process, we
expanded the root node, resulting in two children nodes (one for each triangle). Both are
visited in the second iteration.

B.3 The Second Iteration
The second iteration starts with the two triangles 𝑃1𝑃6𝑃3 and 𝑃3𝑃7𝑃2. The

optimal solutions for 𝑓1 and 𝑓2 establish the upper bounds for the triangle 𝑃1𝑃6𝑃3. By
applying (5-4) to them, we have 𝑓4 = 7166−7152

35−32 = 14
3 . The optimal schedule for 𝑓4,

presented in the following table, relates to the point 𝑃8 = (34, 7156), which corresponds
to case (a). Thus, by applying Propositions 5.7 and 5.8, we identify new upper and lower

𝑓1=0 𝑓3 = 22 𝑓2 = 49
7152

8597

.𝑃1

29.49𝑓 + 7152

.𝑃225𝑓 + 7372.𝑃4

35𝑓
+ 715

2

.𝑃3.
𝑃5

𝑓

𝑍(𝑓)

(A)

𝑓1=0 𝑓3 = 22 𝑓2 = 49

7166
7870

8597

.𝑃1 32.64𝑓 + 7152

.
𝑃3

26.92𝑓 + 7744
.𝑃2.𝑃7

32𝑓 + 7166

.𝑃6

.𝑃4

𝑓

𝑍(𝑓)

(B)

𝑓1 = 0 𝑓4 = 14/3 𝑓3 = 22
7152

7870

.𝑃1

32.64𝑓 + 7152

.𝑃332𝑓 + 7166.𝑃6

35𝑓
+ 715

2 .𝑃8

𝑓

𝑍(𝑓)

(C)

𝑓3 = 22 𝑓5 = 29 𝑓2 = 49

7870

8597

.𝑃3

26.92𝑓 + 7744

.𝑃225𝑓 + 7372.𝑃7

32𝑓
+ 716

6 .𝑃9

𝑓

𝑍(𝑓)

(D)

Figure B.1: Uncertainty area in the first iteration of the parametric
analysis for 𝑀𝑝𝑎.

Appendix B 153

bounds to reduce the area of uncertainty for 𝑍∗(𝑓), as illustrated in Figure B.2A. The
intervals of uncertainty of 𝑍∗(𝑓) are now the triangles 𝑃1𝑃10𝑃8 and 𝑃8𝑃11𝑃3.

𝑓 (𝑍∗(𝑓𝑖), 𝑥𝑖
0, 𝐶𝑖) 𝑃 = (𝑓𝑖, 𝑍∗(𝑓𝑖)) UB(𝑓) LB(𝑓)

𝑓4 = 14
3 (7314.67, 34, 7156) 𝑃8(14/3, 7314.67) 34𝑓 + 7156 𝑃1𝑃8: 34.86𝑓 + 7152

𝑃8𝑃3: 32.04𝑓 + 7165.02

The upper bounds for the triangle 𝑃3𝑃7𝑃2 are defined by the optimal schedules
for 𝑓2 and 𝑓3. By applying (5-4) in them, we have 𝑓5 = 7372−7166

32−25 = 206
7 . For the sake of

brevity, let we round it to 𝑓5 = 29. The optimal schedule for 𝑓5, presented in the following
table, provides another case (a) again with the point 𝑃9 = (29, 8089). Thus, by tightening
the upper and lower bounds (the UB(𝑓)’s and LB(𝑓)’s), we reduce the area of uncertainty
for 𝑍∗(𝑓). The intervals of uncertainty for this range of 𝑓 are now the triangles 𝑃3𝑃12𝑃9
and 𝑃9𝑃13𝑃2, as illustrated in Figure B.2B.

𝑓 (𝑍∗(𝑓𝑖), 𝑥𝑖
0, 𝐶𝑖) 𝑃 = (𝑓𝑖, 𝑍∗(𝑓𝑖)) UB(𝑓) LB(𝑓)

𝑓5 = 29 (8089, 31, 7190) 𝑃9(29, 8089) 31𝑓 + 7190 𝑃3𝑃9: 31.29𝑓 + 7181.71
𝑃9𝑃2: 25.4𝑓 + 7352.4

𝑓1=0 𝑓4 = 14/3 𝑓3 = 22

7870

.𝑃1 34.86𝑓 + 7152

.
𝑃8

32.04𝑓 + 7165.02
.𝑃3.𝑃11

34𝑓 + 7156

.𝑃10

.𝑃6

𝑓

𝑍(𝑓)

(A)

𝑓3=22 𝑓5 = 29 𝑓2 = 49

8089

.𝑃3 31.29𝑓 + 7181.71

.
𝑃9

25.4𝑓 + 7352.4
.𝑃2.𝑃13

31𝑓 + 7190

.𝑃12

.𝑃7

𝑓

𝑍(𝑓)

(B)

Figure B.2: Reduction of the area of uncertainty in the second
iteration of the parametric analysis for 𝑀𝑝𝑎.

B.4 The Last Iteration
We start this iteration with four triangles: (1) 𝑃1𝑃10𝑃8, (2) 𝑃8𝑃11𝑃3, (3) 𝑃3𝑃12𝑃9,

and (4) 𝑃9𝑃13𝑃2. For (1), the upper bounds are given by the optimal schedules for 𝑓1 and
𝑓4 and by applying (5-4) to themwe have 𝑓6 = 7156−7152

35−34 = 4. Analogously, for (2), 𝑓4 and
𝑓3 define the upper bounds, and we have 𝑓7 = 7166−7156

34−32 = 5. For (3), 𝑓3 and 𝑓5 define
the upper bounds, and we have 𝑓8 = 7190−7166

32−31 = 24. Finally, for (4), the upper bounds are
given by the optimal schedules for 𝑓5 and 𝑓2, and we have 𝑓9 = 7372−7190

31−24 = 182
6 ≈ 31.

The optimal schedules for the new intermediary 𝑓 ’s, 𝑓6,…,9, are:

Appendix B 154

𝑓 (𝑍∗(𝑓𝑖), 𝑥𝑖
0, 𝐶𝑖) 𝑃 = (𝑓𝑖, 𝑍∗(𝑓𝑖))

𝑓6 = 4 (7291, 35, 7152) 𝑃14(4, 7291)
𝑓7 = 5 (7326, 34, 7156) 𝑃15(5, 7326)
𝑓8 = 24 (7934, 32, 7166) 𝑃16(24, 7934)
𝑓9 = 31 (8147, 29, 7248) 𝑃17(31, 8147)

In this iteration, the PA identifies four breakpoints via case (b) (See Figure B.3).
The point 𝑃14 coincides with 𝑃10. Thus, there is a breakpoint at 𝑓=4 (Figure B.3A). The
point 𝑃15 coincides with 𝑃11 and identifies a breakpoint at 𝑓=5 (Figure B.3B). The point
𝑃16 coincides with 𝑃12 determining a breakpoint at 𝑓=24 (Figure B.3C). Finally, point
𝑃17 coincides with 𝑃13, defining a breakpoint at 𝑓=31 (Figure B.3D).

As the two points at 𝑓 = 24 and 𝑓 = 31 collapsed with case (b) and we have a
distinct LB(𝑓) for them, there is another breakpoint at 𝑓 = 29. This does not occur for
𝑓 = 14/3 and 𝑓 = 22 because the LB(𝑓)’s for them are the same. One last breakpoint
occurs at 𝑓 = 49, the endpoint of the range for the PA. As there is no more area of
uncertainty to refine, the PA process is terminated. The next section presents the complete
PA results.

𝑓1=0 𝑓6 = 4 𝑓4 = 14/3

7291

.𝑃1

35𝑓
+ 715

2

.𝑃10 = 𝑃14
34𝑓 + 7156

.𝑃8

𝑓

𝑍(𝑓)

(A)

𝑓4=14/3 𝑓7 = 5 𝑓3 = 22

7326

.𝑃8

34𝑓
+ 715

6

.𝑃11 = 𝑃15
32𝑓 + 7166

.𝑃3

𝑓

𝑍(𝑓)

(B)

𝑓3=22 𝑓8 = 24 𝑓5 = 29

7934

.𝑃3

32𝑓
+ 716

6

.𝑃12 = 𝑃16
31𝑓 + 7190

.𝑃9

𝑓

𝑍(𝑓)

(C)

𝑓5=29 𝑓9 = 31 𝑓2 = 49

8147

.𝑃9

29𝑓
+ 724

8

.𝑃13 = 𝑃17
25𝑓 + 7372

.𝑃2

𝑓

𝑍(𝑓)

(D)

Figure B.3: Breakpoints identified in the last iteration of the para-
metric analysis for 𝑀𝑝𝑎.

Appendix B 155

B.5 The Six Breakpoints
We found optimal schedules for nine values of 𝑓 , as indicated in Table B.1. The

process produced a complete PA of 𝑓 for 𝑀𝑝𝑎. There are six breakpoints: 𝑓 = 4, 5, 24,
29, 31, and 49. At each of these breakpoints, there are two distinct optimal schedules.
Table B.2 summarizes the results, and Figure B.4 depicts the shape of 𝑍∗(𝑓).

Table B.1: The 𝑓 s examined in the parametric analysis of 𝑀𝑝𝑎.

Breakpoint? 𝑓 𝑍∗(𝑓) 𝑥∗
0 𝐶∗ 𝑥∗

0 𝐶∗

No 0 7152 35 7152 - -
Yes 4 7292 35 7152 34 7156
No 14/3 7314.67 34 7156 - -
Yes 5 7326 34 7156 32 7166
No 22 7870 32 7166 - -
Yes 24 7934 32 7166 31 7190
Yes 29 8089 31 7190 29 7248
Yes 31 8147 29 7248 25 7372
Yes 49 8597 25 7372 23 7470

Table B.2: A summary of the parametric analysis of 𝑓 for 𝑀𝑝𝑎

Range of 𝑓 𝑥∗
0 𝐶(𝑓) 𝑍∗(𝑓) Range of 𝑍∗(𝑓)

0 ≤ 𝑓 ≤ 4 35 7152 35𝑓 + 7152 7152 ≤ 𝑍∗(𝑓) ≤ 7292
4 ≤ 𝑓 ≤ 5 34 7156 34𝑓 + 7156 7292 ≤ 𝑍∗(𝑓) ≤ 7326
5 ≤ 𝑓 ≤ 24 32 7166 32𝑓 + 7166 7326 ≤ 𝑍∗(𝑓) ≤ 7934
24 ≤ 𝑓 ≤ 29 31 7190 31𝑓 + 7190 7934 ≤ 𝑍∗(𝑓) ≤ 8089
29 ≤ 𝑓 ≤ 31 29 7248 29𝑓 + 7248 8089 ≤ 𝑍∗(𝑓) ≤ 8147
31 ≤ 𝑓 ≤ 49 25 7372 25𝑓 + 7372 8147 ≤ 𝑍∗(𝑓) ≤ 8597
49 ≤ 𝑓 23 7470 23𝑓 + 7470 8597 ≤ 𝑍∗(𝑓)

4 5 24 29 31 49

7292

7326

7934

8089

8147

8597

35
𝑓

+
71

52 34𝑓 + 7156 32𝑓 + 7166
31𝑓 + 7190

29𝑓 + 7248

25𝑓 + 7372

23𝑓 + 7470

𝑓

𝑍∗(𝑓)

Figure B.4: The parametric analysis of 𝑀𝑝𝑎.

Appendix B 156

Table B.3: Values of 𝑤𝑗 and 𝑐𝑖𝑗 in the 𝑀𝑝𝑎 instance.
𝑐𝑖𝑗’s

𝑗 𝑤𝑗 i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9 i=10 i=11 i=12 i=13 i=14 i=15 i=16
1 4 8 8 8 8 8 6 2 8 8 8 8 8 8 8 8 8
2 7 102 102 102 102 102 102 102 102 102 102 102 102 102 58 44 102
3 8 152 152 152 152 152 152 152 152 152 152 152 152 126 82 94 152
4 6 14 14 14 14 14 14 8 8 14 14 14 14 14 14 14 12
5 4 24 24 24 24 24 22 16 18 24 24 24 24 24 24 16 24
6 6 42 42 42 42 24 20 40 42 42 42 42 42 42 42 42 42
7 7 154 188 188 188 188 188 188 188 188 188 188 188 188 188 130 94
8 9 118 118 118 118 118 118 118 118 118 118 118 118 118 118 60 58
9 8 182 182 182 168 182 182 182 182 182 182 182 182 182 156 98 122
10 2 144 144 136 144 144 144 144 144 144 144 144 144 104 74 118 144
11 3 186 180 186 186 186 186 186 186 186 186 186 142 96 140 186 186
12 1 94 94 94 94 94 94 94 94 94 94 94 50 44 94 94 94
13 9 14 14 14 14 14 14 14 0 14 14 14 14 14 14 14 14
14 8 18 18 18 18 18 18 14 4 18 18 18 18 18 18 18 18
15 4 52 52 52 52 52 6 48 52 52 52 52 52 52 52 52 52
16 7 180 180 180 180 180 180 180 180 180 180 180 180 180 180 180 0
17 1 306 306 306 306 306 306 306 306 306 292 306 306 306 306 194 126
18 7 288 288 288 288 288 288 288 288 268 288 288 288 288 134 174 288
19 1 372 372 372 372 372 372 372 328 372 372 372 372 196 218 372 372
20 1 214 214 214 214 214 214 174 214 214 214 214 214 40 214 214 214
21 2 292 292 292 292 292 288 292 292 292 292 292 178 118 292 292 292
22 8 16 16 16 16 16 16 10 6 16 16 16 16 16 16 16 16
23 9 48 48 48 48 48 10 42 48 48 48 48 46 48 48 48 48
24 8 352 348 352 352 352 352 352 352 352 352 352 352 352 352 200 154
25 3 334 334 334 334 334 334 334 334 334 334 334 334 334 152 184 334
26 1 428 428 428 428 428 428 428 428 428 428 428 428 216 244 428 394
27 3 226 226 226 226 226 226 226 226 226 226 226 226 14 226 210 226
28 2 410 410 410 410 410 410 410 410 410 410 410 218 200 404 410 410
29 8 294 294 294 294 294 294 294 294 294 294 230 102 256 294 294 294
30 6 32 32 32 32 24 14 28 32 32 32 32 32 32 32 32 32
31 8 52 52 52 36 28 40 52 52 52 52 52 52 52 52 52 52
32 3 160 160 160 160 160 160 158 160 160 160 160 160 160 160 78 82
33 7 352 352 352 352 352 288 352 352 352 352 352 352 352 286 208 274
34 9 346 346 346 346 276 346 346 346 346 346 346 346 272 206 282 346
35 1 348 348 348 314 348 348 348 348 348 348 348 268 188 274 348 348
36 2 196 196 166 196 196 196 196 196 196 196 196 114 110 196 196 196
37 4 458 458 358 458 458 458 458 458 458 458 364 278 370 458 458 458
38 7 244 286 286 286 286 286 286 286 286 264 162 188 286 286 286 286
39 2 98 98 98 98 98 52 98 98 98 76 68 98 98 98 98 98
40 9 78 78 78 78 78 78 78 78 64 44 48 78 78 78 78 78
41 8 174 174 174 174 174 174 174 174 80 174 174 174 174 174 94 174
42 9 304 304 304 304 304 304 304 240 210 304 304 304 304 236 222 304
43 2 278 278 278 278 278 278 202 214 278 278 278 278 202 212 278 278
44 8 308 308 308 308 308 230 232 308 308 308 308 226 234 308 308 308
45 5 162 162 162 162 162 84 162 162 162 162 158 80 162 162 162 162
46 8 346 346 346 346 256 268 346 346 346 340 252 266 346 346 346 346
47 8 246 246 246 226 156 246 246 224 246 222 152 246 246 246 246 246
48 5 58 58 58 38 58 58 58 58 58 36 42 58 58 58 58 58
49 6 68 68 56 50 68 68 68 68 56 46 68 68 68 68 68 68
50 1 94 168 168 168 168 168 168 168 76 168 168 168 168 168 168 168
51 4 220 296 296 296 296 296 296 232 202 296 296 296 296 296 296 232
52 7 276 276 276 276 276 276 202 214 276 276 276 276 276 276 202 214
53 2 166 166 166 166 166 88 166 166 166 166 166 166 166 78 166 166
54 8 342 342 342 342 254 266 342 342 342 342 342 342 254 256 342 342
55 7 220 220 220 202 132 220 220 220 220 220 220 196 132 220 220 220
56 4 60 60 48 40 60 60 60 60 60 60 54 36 58 60 60 60
57 3 162 162 162 88 162 162 162 162 162 162 162 162 162 74 160 162
58 1 320 320 250 246 320 320 320 320 320 320 320 320 232 232 320 320
59 7 200 182 130 200 200 200 200 200 200 200 200 178 112 200 200 200
60 9 144 144 144 72 144 144 144 74 144 144 144 144 144 144 144 144
61 6 286 286 216 212 286 286 214 216 286 286 286 286 286 286 286 286
62 9 170 152 100 170 170 160 100 170 170 170 170 170 170 170 170 170
63 3 256 256 256 256 256 256 256 186 194 256 256 256 194 194 256 256
64 1 142 142 142 142 142 142 142 72 142 142 142 132 82 142 142 142
65 7 268 268 268 268 268 268 196 198 268 268 266 206 206 268 268 268
66 6 146 146 146 146 146 136 74 146 146 146 144 84 146 146 146 146
67 7 66 66 66 66 66 66 66 66 64 66 66 62 4 66 66 66
68 2 130 130 130 130 130 130 130 130 130 130 128 66 70 130 130 130
69 4 68 68 68 68 68 68 68 68 68 68 64 6 68 68 68 68

	Pre-textual elements
	Cover
	Title page
	Authoral rights
	Dedicatory
	Acknowledgements
	Epigraph
	Abstract
	Resumo

	Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Symbols
	1 Introduction
	1.1 Thesis Scope
	1.2 Primary Contributions
	1.3 Thesis Outline

	2 Multiway Spatial Join Processing
	2.1 Spatial Data
	2.2 Spatial Analysis
	2.3 Spatial Join
	2.3.1 Distributed Processing of Spatial Join
	2.3.2 Clone Join
	2.3.3 Reference Point Method

	2.4 Multiway Spatial Join
	2.4.1 Plan Enumeration
	2.4.2 Estimating the Cost of Execution Plans
	2.4.3 Plan Scheduling
	2.4.4 Plan Selection
	2.4.5 Query Execution

	2.5 Final Considerations

	3 A Cost Model for Distributed Multiway Spatial Join Queries
	3.1 Multidimensional Grid Histograms
	3.2 Split Method
	3.3 Gathering Metadata for Histogram Cells
	3.4 Building Intermediate Histograms
	3.5 Estimating the Cost of an Execution Plan
	3.6 Cost Model Evaluation
	3.6.1 Evaluation of the Hash Method
	3.6.2 Evaluation of the Split Method
	3.6.3 Evaluation of Join Selectivity
	3.6.4 Evaluation of Join Selectivity per Histogram Cell

	3.7 Final Considerations

	4 Scheduling Multiway Spatial Joins Queries
	4.1 Linear Programming Background
	4.2 Lagrangian Relaxation
	4.3 Problem Formulation
	4.4 Related Problems
	4.5 Simplified Model
	4.6 Linear Programming Relaxation for SM
	4.7 Lagrangian Relaxation for SM
	4.8 Repairing Heuristic
	4.9 A Greedy Algorithm for SM
	4.10 Complexity of the Algorithms
	4.11 Evaluation
	4.11.1 Instances Characterization and the Affect of f
	4.11.2 Quality of Generated Schedules
	4.11.3 Comparison of the Execution Times
	4.11.4 Performance of SM Schedules in FM

	4.12 Broader Applicability of FM
	4.13 Final Considerations

	5 Controlling the Consumption of Computational Resources in Query Scheduling
	5.1 Introduction to Parametric Analysis
	5.2 Finding Bounds for PA
	5.3 Bounds for a Simple Numerical Example
	5.4 Useful Results for PA
	5.5 Bounds on Z*(f)
	5.6 The PA Process
	5.7 A Numerical Example of PA
	5.8 Upper Bound of Z*(f) Using Approximate Schedules
	5.9 Final Considerations

	6 Selection and Execution of Multiway Spatial Join Query Plans
	6.1 Selection of Distributed Execution Plans
	6.2 Query Execution Engine
	6.3 Evaluation
	6.3.1 Evaluation of the Communication Cost Estimate
	6.3.2 Evaluation of the Selection of Distributed Execution Plans
	6.3.3 Resource Consumption of Schedules
	6.3.4 Resource Consumption Along Query Execution
	6.3.5 Scalability of Query Execution

	6.4 Final Considerations

	7 Related Work
	7.1 Foundation Work on Spatial Query Optimization
	7.2 MapReduce-based Work
	7.3 Spark-based Work
	7.4 Systems Designed from Scratch
	7.5 Comparison of Execution Times
	7.6 Overall Comparison of Features
	7.7 Final Considerations

	8 Conclusion
	8.1 Summary of Contributions
	8.2 Limitations of our Approach
	8.3 Future Work

	Bibliography
	A Detailed Results for Schedule Methods
	A.1 Challenging Values of f
	A.2 Characteristics of Schedules Computed
	A.3 Execution Times of GR, LP and LR for all Queries

	B A Complete Example of Parametric Analysis
	B.1 Finding Bounds for PA
	B.2 Starting the PA Process
	B.3 The Second Iteration
	B.4 The Last Iteration
	B.5 The Six Breakpoints

