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"Inventions are the most important product of a human creative mind.
This ultimate purpose is the complete mastery of the mind over

the material world, the harnessing of human nature
to attend human needs"

(Nikola Tesla).



Abstract
The fast development of human civilization imposed a recent and big environmental impact
on the planet earth and the collective of life on Earth to support. The dawn of civilization
is a very recent impact on the geologic time scale of the planet. Human needs to have a
dimension of the effect of their actions inside the areas where it lives and in other natural
environments to know their environmental impacts and consequences. The will to give
an objective answer for this topic guided this research work. This doctoral dissertation
presents the results of three years of research as a Doctoral student in the Environmental
Technologies program at UFMS (Federal University of Mato Grosso do Sul). During my
research, remote sensing and deep learning were the leading scientific fields I studied. The
applications of the conjunction of these sciences to analyze the vegetation composition
of urban and natural environments in the form of wetlands. We achieved exciting results
in applying these techniques, i.e., an F1-score of 91% and an IoU of 73% for urban
vegetation segmentation. Moreover, achieving a maximum 97% of F1-score for a specific
plant species and 88% average for the whole dataset of 11 wetland plant species. The
advances of the experiments conducted during the Doctorate program comprehend a broad
range of sensors, from Unmanned aerial vehicles (UAV) that produce centimeter-level
data to sensors capable of producing large earth mosaics. We also worked with a broad
range of Deep Learning techniques to develop vegetation models. This research work and
development can technologically assist the community in improving the understanding of
the natural environment that we live in, leading to more resilient, sustainable, and healthy
earth environmental systems

Keywords: computer vision; remote sensing; deep learning; semantic segmentation;
ecology; smart cities.



Resumo
O rápido desenvolvimento da civilização humana impôs um recente e grande impacto
ambiental ao planeta Terra e ao coletivo da vida terrestre. O alvorecer da civilização é um
impacto muito recente na escala de tempo geológico do planeta. O ser humano precisa ter
uma dimensão do efeito de suas ações dentro das áreas onde vive e em outros ambientes
naturais para conhecer seus impactos e consequências ambientais. A vontade de dar uma
resposta objetiva a este tema orientou este trabalho de pesquisa. Esta dissertação de
doutorado apresenta os resultados de três anos de pesquisa como aluno de doutorado no
programa de Tecnologias Ambientais da UFMS (Universidade Federal de Mato Grosso
do Sul). Durante minha pesquisa, sensoriamento remoto e aprendizado profundo foram
os principais campos científicos que estudei. As aplicações da conjunção dessas ciências
para analisar a composição da vegetação de ambientes urbanos e naturais na forma de
zonas úmidas. Obtivemos resultados empolgantes na aplicação dessas técnicas, ou seja, um
F1-score de 91% e um IoU de 73% para a segmentação da vegetação urbana. Além disso,
alcançando um máximo de 97% de pontuação F1 para uma espécie de planta específica e
88% de média para todo o conjunto de dados de 11 espécies de plantas de zonas úmidas. Os
avanços dos experimentos realizados durante o doutorado abrangem uma ampla gama de
sensores, desde veículos aéreos não tripulados (VANT) que produzem dados centimétricos
até sensores capazes de produzir grandes mosaicos da terra. Também trabalhamos com uma
ampla gama de técnicas de Deep Learning para desenvolver modelos computacionais de
de vegetação. Este trabalho de pesquisa e desenvolvimento pode ajudar tecnologicamente
a comunidade a melhorar a compreensão do ambiente natural em que vivemos, levando a
sistemas ambientais terrestres mais resilientes, sustentáveis e saudáveis.

Palavras-chave: visão computacional; sensoriamento remoto; aprendizado profundo;
segmentação semântica; ecologia; cidades inteligentes.
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1 Introduction

Figure 1 – Illustration of a satellite remote sensor obtaining data from the surface
of the Earth. Credits to ’https://www.orbitaleos.com/remote-sensing-
technologies/’. image obtained via website in may/2022

Water and vegetated environments is one of the most abundant essential elements
that make part of the Earth (CHANG, 2006). They are a way that life finds support to
inhabit this planet, making them essential to secure the sustainability of life. To develop a
greater understanding of this element and their abundance or richness in a given location,
on the crust surface of the planet, it is necessary to create maps, being remote sensing
as an alternative to provide data even in the most difficult remote areas, such as top of
mountains, isolated islands rocky terrains and others areas (ESCH et al., 2017; GORELICK
et al., 2017). According to (LILLESAND; KIEFER; CHIPMAN, 2015), remote sensing
is "the science and art of obtaining information about an object, area, or phenomenon
through the analysis of data acquired by a device that is not in contact with the object, area,
or phenomenon under investigation”. For the act of reading this doctoral dissertationis,
you are applying remote sensing. Your eyes when passing through a page are collecting
"data" in the form of electromagnetic impulses created by a source of light that make
contact with the paper sheet page or screen and reflect till your eyes, depending on the
color that it encounters it have a different intensity of absorption, resulting in a different
intensity of reflected light that reaches till yous. The “data” your eyes acquire are light
reflected from the surface of the page or screen, forming letters or some more colorful
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are pictures and images, creating a recognizable pattern in your mind that forms words,
sentences, and phrases that you are capable of understanding and extracting interpretable
information; this can be called an interpretation process. In many aspects, remote sensing
can be through as the process of reading and interpreting data. Using a great diversity of
sensors, we collect data that can be analyzed to obtain information about objects, areas,
and phenomena of interest. The remotely collected data can be of many forms, including
variations in temperature, acoustic waves, forces, or electromagnetic energy distributions.

1.1 Scientific Background and Motivation

To map accurately and efficiently water and forests, efficient detection methods are
needed. Data on the extent and dynamics of these environments are crucial for a better
understanding of natural and anthropogenic processes and impacts on the environment,
such as the alteration in quality, distribution, and circulation of water, the loss or increase in
biodiversity, and populations. With remote sensing data, we are able to create mathematical
models that predict, interpret or quantify specific processes and impacts, with possible
approximations and analysis. The data available is abundant and rich enough for us
to make pretty accurate assumptions about the environment and its actors. Despite
significant progress in data-science engineering, efficient processing of higher-level products
remains inherently non-automatable, creating barriers for the general public to access and
understand the natural and anthropogenic processes. Understanding these processes is
becoming time to time more important because water resources and forest resources are
under growing pressure from economic sectors such as agriculture, energy, industry, tourism,
and domestic use. Furthermore, water availability is decreasing, driving more regions into
water, food, and energy insecurity (D’ODORICO et al., 2018). Recent international agendas
on climate change and the environment demand objective information on planetary land
and water surface conditions and changes to study the drivers behind them.

The United Nations Department of Economic and Social Affairs (BAN, 2016) define
seventeen challenges to be achieved by 2030, and many of them directly or indirectly require
up-to-date and high-resolution information on forests and cities. To name some: 1) Promote
sustainable use of terrestrial ecosystems; 2) Make cities and human settlements sustainable;
3) Implementation and revitalize the global partnership for sustainable development.

The IPCC report for 2021 (PÖRTNER et al., 2022) identifies knowledge gaps in
observations and our understanding of water, forest, and population dynamics. Furthermore,
given the diversity and volume of EO data accessible today, these gaps typically indicate
a lack of appropriate algorithms to interpret the available data. The raw data must be
correctly engineered to derive higher-level variables that a broader, sometimes non-academic
audience may understand. And one of the
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This will bring to the reader a briefly revision of the current bibliography of remote
sensing and deep learning related to environmental applications. Earth surface observation
and interpretation technologies, in conjunction with field data collection, are used to
measure, monitor, and model the tangible components that are parts of the cycles of
natural and anthropogenic ecosystems (WENG, 2012). We are witnessing a time of intense
human evolution result of much research, development, and sharing of technologies. As
society demands, technological advances occur in the area of remote sensors and computer
vision, creating new possibilities and interactions. Some blooming science fields that involve
the combined use of remote sensors and computer vision are: Autonomous Driving
(ALBUS, 2002; HUANG et al., 2018; SALLAB et al., 2017; CAESAR et al., 2020); Voice
Assistant (FERNANDES; OLIVEIRA, 2021; MCLEAN; OSEI-FRIMPONG, 2019);
Computation of tropospheric delay (ASKNE; NORDIUS, 1987; Memarian Sorkhabi;
ASGARI; AMIRI-SIMKOOEI, 2021; LIM; BAE, 2021). And for the theme of this research,
we are going to focus on Land Cover Mapping (CIHLAR, 2000; FRIEDL et al.,
2002; BARTHOLOME; BELWARD, 2005; WULDER et al., 2018; CALDERÓN-LOOR;
HADJIKAKOU; BRYAN, 2021; MARTINS et al., 2021).

Modern remote sensors can generate high spatial, temporal and spectral resolution data,
making it possible to identify and quantify terrestrial objects, areas, and phenomenons.
Perceiving both its abundance or lack and its changes over time and creating possibilities
for investigating the causes of these changes, creating possible future scenarios and debates,
bringing to light good management and sustainability strategies.

Satellites and other sensors are collecting massive amounts of data for many years,
resulting in multi-petabyte datasets of "raw" data. However, it has only been in the last
decade, thanks to recent advances in cloud computing, that we have begun to turn these
enormous amounts of data into useful knowledge. The age of satellite remote sensing
for earth observations began with the launch of Sputnik 1 on October, 1957, the first
man-made satellite, by the former Soviet Union (CRACKNELL; VAROTSOS, 2007),
sputnik send back radio signals, which scientists used to study the ionosphere. On July,
1972 – Landsat 1 the 1st civilian Earth observation satellite with cameras RBV and MSS
was launched (BOLAND, 1976). After that numerous Earth-observing satellites have
come, and with the necessity of global scale vegetation monitoring, comes the AVHRR
(CRACKNELL, 1997). The commercial character of these enormous archives of satellite
data was a major obstacle for their examination and use. This changed with the open
access to the open of the Brazilian Data Catalog for HRCC and WFI data from CBERS
(FERREIRA; CÂMARA, 2008) and followed by the Landsat mission datasets by NASA in
2008 (ZHU et al., 2019). Events which represented a significant change in understanding of
the management of data, enabling a more profound investigations in many fields that are
possible to advance and investigate with remote sensing data one of them being the use of
EO for vegetation monitoring. Furthermore, more time was needed to produce the first



Chapter 1. Introduction 16

global-scale mosaics research results, allowing the databases of forests to be thoroughly
studied and analyzed by the general audience in the form of a Land-cover classification
map by the work of Hansen (HANSEN et al., 2013).

Plants-related sciences like plant morphology, Botany, and Agricultural Sciences, care a
lot about the shapes of leaves, petals, and complete plants, forests, and agricultural lands.
They can distinguish between species, monitor plant health and growth. The growing
interest in biodiversity changes related to several reasons, always related to many linked
events that have many different natures, but one of the very predominant events is the
economical pressure on a forest or vegetated area, intending to increase production or to
just clear cut the space for the selling of the natural resources present in that area. With
the increasing availability of digital images (data) combined with the increasing power
(Computer Vision Algorithms (CVA)) and mechanisms (Hardware) to process this data,
this topic is timely and always presents a lot of new opportunities.

1.2 Questions

Many attempts have been made to create accurate regional and global scale maps of
forest cover and plant species existence and coverage. For efficient and accurate land-cover
data extraction detection from Earth Observation (EO) data, we need to address issues
of local and global objectives, accuracy, and applicability, as well as provide access for a
broad range of users. In the present study, this will be done by answering the following
questions using for the time, advanced remote sensing and deep learning tools:

• How to accurately segment and quantify vegetation inside cities?

• How to differentiate species of plants inside a very bio-diverse environment such as
wetlands?

• How to accurately monitor vegetation inside large areas?

1.3 Contributions

The contributions can be summarized as follows:

• Develop procedures to explore the advances in the field of computer vision applied
to vegetation mapping.

• Create and use datasets with a broad range of sensors with the finality of vegetation
mapping
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• Awaken the interest of managers in the use of technology in the task of accurately
mapping and quantifying the environment,and possibly while using the proposed
methods to help in the development of effective policies related to the environment.

1.4 Outline

The format chosen for the presentation of this doctoral dissertation is of Articles. So
the organization of the document will be. Chapter 2 reviews the relevant literature and
existing methods used to detect vegetation inside different environments. Chapters 3, 4
and 5 present the articles developed during the doctorate program. Chapter 6 presents
discussions and conclusions and directions for future works.
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2 Brief overview of remote sensing
for vegetation monitoring

This chapter gives an overview of available remote sensing approaches for processing remote
sensor imagery, also a overview of the freely available datasets that were used in this study
will also be provided, also explanations of the methodologies applied in this study, that
guide interpretations of the environment.

Figure 2 – Aerial view of part of desecrated land in Pantanal Brazil - 09/21. Image
composed by the Autor via Planet API using GEE.

Keywords: literature overview, datasets, multi-spectral satellite imagery, drone imagery
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2.1 Introduction

With the concept that digital images are formed by capturing electromagnetic energy
propagated through the atmosphere via a sensor. Remote sensing is the science of
detecting, recording, and interpreting these electromagnetic energy data (LILLESAND;
KIEFER; CHIPMAN, 2015). Deep learning is the science of programming computers so
they can learn from data, Artificial Neural Networks (ANNs) or Deep Learning
is a model inspired by the networks of biological neurons found in our brains (GÉRON,
2019). In later years, the implementation of artificial neural networks in computer science
focused less on replicating actual biological structures and processes and instead developed
its own statistical, and computational logic (LILLESAND; KIEFER; CHIPMAN, 2015).
This work brings land surface classification strategies using Remote sensing images such
as satellite, airplane, and drone images, in combination with computer vision techniques
such as Deep Learning. In this way, making possible to discretize large volumes of data
efficiently and create accurate maps and quantification of urban forests, individual trees,
and other plants. A general workflow technique performed to map an urban area with
Unmanned Aerial Vehicles, and deep learning techniques are presented in Figure 3. It is
an oversimplification, and many nuances encompass every part of the process. Creating
and processing and deep Learning model is not a simple task; it needs much dedication
and knowledge of the operator, and the same can be said for the data collection phases.

Figure 3 – Basic workflow of a urban forest deep learning mapping. Figure taken from
(MARTINS et al., 2021).

Image acquisition: There are a diversity of sensors or digital cameras that are
capable of capturing electromagnetic energy data. The core sources of remote sensed data
that we will approach in this research are: satellites, airplanes, and drones.

"Typically digital cameras are a two-dimensional array of silicon semiconductors con-
sisting of either charge-coupled device (CCD) or complementary metal-oxide semiconductor
(CMOS) detectors. Each array detector (or photosite location) senses the energy radiating
from one pixel in the image field. When this energy strikes the surface of the detector,
a small electrical charge is produced, with the charge’s magnitude proportional to the



Chapter 2. Brief overview of remote sensing
for vegetation monitoring 20

scene brightness within the pixel. The charge is converted to a voltage value, which is,
in turn, converted to a digital brightness value. This process results in the creation of
digital brightness value data for each photosite pixel in the array" (LILLESAND; KIEFER;
CHIPMAN, 2015).

Image processing: certain preprocessing operations are performed on the raw data
of an image prior to its use in any further interpretation. These operations can be made to
correct flaws in the data, like noise removal, radiometric correction, geometric correction,
subsetting, mosaicking, and layer stacking. Furthermore, we can enhance the data by
performing operations like Contrast manipulation, Spatial feature manipulation, and
Multi-image manipulation.

Deep learning: The data value reaches the computer and needs to be interpreted.
Deep learning is one of the sciences that are capable of doing it, and creating a quantification
of a determined feature of the provided data. There are an uncountable number of ways and
configurations that we can address to make a Deep-learning model. The current state of the
art of image processing techniques involves Deep Learning in the form of Convolutional
Neural Networks proposed by (LECUN; BENGIO et al., 1995), and transformer based
architectures (VASWANI et al., 2017). "Neural networks are "self-training" in that they
adaptively construct linkages between a given pattern of input data and particular outputs"
(LILLESAND; KIEFER; CHIPMAN, 2015).

Agricultural expansion and climate variability are significant events of disturbance in
natural areas (DAVIDSON et al., 2012). Moreover, these events of what sometimes may
appear to be a localized environmental transformation have detectable and in-detectable
effects on near and far community health, availability of resources, and development.
The phenomenon known as climate change on earth is caused by in-numerous previous
anthropological actions that they we do not know the real environmental implications
(CLINE et al., 1992; VITOUSEK, 1994; DELWORTH; KNUTSON, 2000; NORDHAUS;
BOYER, 2003; KERR, 2007; CHOI; GAO; JIANG, 2020).

One of humanity’s urgent present and future challenges is the global urbanization. The
actual dimensions and impacts of this phenomenon are not yet fully understood (ESCH et
al., 2017), but it is established that the urbanization phenomena cause impacts on global
environmental change (GRIMMOND, 2007). For us to have a perspective of the explosive
growth of urban settlements, in 1950, the rural population was twice the size in the number
of individuals as the urban population, and around 2008 the urban population exceeded the
rural population for the first time in history (ESCH et al., 2017), and this phenomenon is
increasing over time in many regions of the world. Also, the earth’s population is increasing,
the highlights of the United Nations - World Population Prospects -, World Population
Prospects of 2019 (ECONOMIC; AFFAIRS, 2019), the global population could grow to
around 8.5 billion in 2030, 9.7 billion in 2050, and 10.9 billion in 2100 (ECONOMIC;
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AFFAIRS, 2019). Therefore, we need densely inhabited urban environments to be prepared
to provide an adequate quality of life for their residents in tune with actions that provide
sustainability for the environment. Related to this, one of the themes explored in this
research is Smart Cities. Smart Cities is a concept and field of research that search for
engineering methods that make cities and human settlements inclusive, safe, resilient, and
sustainable(ECONOMIC; AFFAIRS, 2019). Capable of efficiently overcoming challenges
external and internal of the most diverse natures. We can mention some of these natures:
economic, sanitary, environmental, and climatic (WENG, 2012). For this, the smart city
must develop or implement innovative methods and techniques that support the effective
management of the various components of the urban ecosystem and its resources and other
assets to mitigate the adverse impacts caused by the urbanization phenomena (WENG,
2012).

Furthermore, encompassing the theme of Smart Cities, we will address the theme of
Urban Forests, which refers to all forms of vegetation land covers that grow naturally
or artificially in and around human habitats (BLUM, 2017). So reaching for one of the
objectives of this research is the quantification and mapping of urban forests, presenting
tools and methods for a better understanding of these regions and their respective impact
on their ecosystem or, in other words, their cities. Moreover, creating a work that brings
proximity to biological sciences and computer vision, in this way, provides a better
understanding of the city environment. The motivation for the analysis of this challenge is
that vegetation in cities performs a significant number of "services" , these services vary
from place to place, but they include air purification, carbon sequestration, temperature
regulation, noise reduction, sustaining the local biodiversity, storm-water drainage, and
scenic and recreational opportunities (BLUM, 2017). Moreover, they also may offer
"disservices" such as the release of volatile organic compounds and particulate matter in
the form of pollen and the compromise of urban structures such as wiring and buildings
(BLUM, 2017). Therefore, an essential part of Urban forests research resides in the mapping
and understanding of these environments and their components and the computation of
the services, interaction, and impacts with the urban environment that will assist us in
realizing adequate management of this so unique and precious type of land cover.

With their large size, wilderness atmosphere, and fresh air, cool and shaded urban
forests are great places for people to unwind from stress, pressure, and hectic activities.
The presence of woods can be beneficial to the health of those who live nearby. This could
be due to the continuous replenishment of oxygen in forested areas and the reduction of
dust and air pollution. A greenbelt of trees can reduce city and traffic noise while providing
a beautiful contemplation scenario.

The number of satellites orbiting Earth is growing, and their technical capabilities are
constantly improving, resulting in improved spatial, temporal, spectral, and radiometric
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resolutions. The number of EO satellites launched into Earth’s orbit and the quantity of
photos observed has increased rapidly in recent years. We owe that to the growth of the
satellite industry, the shrinking satellite sizes, and the costs associated with their delivery
to orbit. This also created new scientific challenges, necessitating the development of
more efficient and reliable data processing methods. With technology and methodological
advancements, the focus of urban forest research can shift to a planetary-scale study,
allowing for a better understanding of Earth’s natural and anthropogenic processes. This
is a recent technological possibility that was only feasible recently (HANSEN et al., 2013).

We utilize satellites for planetary-scale analysis, and we have the technological advances
of UAV systems for a more refined analysis of our environment. They are especially suited
for many civilian applications, notably in environmental monitoring, resource management,
and infrastructure management (LALIBERTE et al., 2010).

2.2 Challenges of vegetation detection

Process-based vegetation models are widely used to predict local and global ecosystem
dynamics and climate change impacts. Due to their complexity, they require careful
parameterization and evaluation to ensure that projections are accurate and reliable.

While vegetation detection from cloud-free images appears to be trivial, it remains a
very challenging task when working with real-world images and when teaching a Neural
Network of what is or is not vegetation. In this case, agricultural and grassy fields may
be misinterpreted as vegetation. We also face many challenges when we intend to work
with a specific kind of plant or vegetation, that the features present are very similar to
the other objects and background present in the image. Additionally, errors of commission
(false positives) can be observed in areas with shadows due to topographic conditions or
the presence of clouds. One of the things that we can observe while working with images
is that the main challenges of vegetation detection start with the own creation of the
datasets and the obstacles that we may face.

2.2.1 Spectral and radiometric resolutions

When working with multi-mission satellite data, the radiometric resolution is another
factor that may influence surface vegetation detection. Radiometric resolution refers to
the sensor’s sensitivity to incoming radiation, which is characterized by the minimum
and maximum radiance values and the number of bits used to store measured values
(DONCHYTS et al., 2017). The actual radiometric resolution for Landsat TM, ETM+,
and ASTER sensors is 8 bits. It was modified to 12-bit for Landsat 8 and Sentinel-2 (stored
as 16-bit). However, the effect of 8-bit radiometric resolution may influence thresholds used
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to detect vegetation. The UAV used in the study had a FAT32 method of storing data an
update from the 16bit method to a 32bit, meaning it’s better for threshold detection.

The spectral resolution of a sensor is related to its capacity to capture the incoming
radiance and store it in bands. The high areas in Figure 4 represent where that sensor can
capture data, and each band corresponds to a space between those. The finer the spectral
resolution, the narrower the wavelength range for a particular channel or band.

Figure 4 – Illustration of the spectral resolution range from the Landsat 8 sensor.
source: <https://www.indexdatabase.de>.

In Figure 5 we have a reflectance illustration of how water, soil and vegetation behave for
each spectral band. The higher the value of reflectance the higher the value the band will
capture. That´s an visual explanation also for the NDVI formula present in Equation 2.1,
where we have a high value for NIR and a small value for red.

Figure 5 – Reflectance of water, soil and vegetation in different wavelengths and Land-
sat TM channels 1 (0.45-0.52 m), 2 (0.52-0.60 m), 3 (0.63-0.69 m), 4 (0.76-
0.90 m), 5 (1.55-1.75 m) and 7 (2.08-2.35 m). source: <https://seos-project.
eu>.

https://www.indexdatabase.de
https://seos-project.eu
https://seos-project.eu
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2.2.2 Spatial and temporal resolution

For the sensors studied in the present research, the spatial resolution of the sensors
varies between 1cm from the UAV to 4.77m from the satellite for optical bands. Figure
6 shows a few examples of cloud-free satellite images over the same area and comes to
illustrate how the spatial resolution is present for different sensors and how we need to use
the spatial resolution adequate for each objective.

Figure 6 – Examples of images with different spatial resolutions, from four
different sensors source: <https://code.earthengine.google.com/
93e8cd71bbc2e58584f04645e8690279>. code adapted from (DONCHYTS
et al., 2017)

A temporal resolution mismatch between observations and the actual changes occurring
on the land surface may significantly influence the applicability of satellite data for multi-
temporal analysis. Temporal resolution is the time a satellite takes to orbit and return
to the same place and get another image. Temporal resolution plays a fundamental role
in detecting changes over time. When dealing with UAV data, the user can more freely
determine the temporal resolution.

2.2.3 Vegetation wrongly classified due to natural and anthropogenic processes

Detection and correction of effects caused by clouds and aerosols are one of the most
studied topics of optical remote sensing (DONCHYTS et al., 2017). Clouds, haze, fog, and
other substances cause absorption and scattering of the solar electromagnetic flux on its way
to the Earth’s surface and then on the way back to the satellite sensor. Higher-level surface
reflectance (SR) products are already available from several satellite missions, including
Landsat, MODIS, and PROBA-V, where images are corrected for atmospheric influences.
Some data providers also offer a quality assessment (QA) band that shows whether a pixel
is cloud-covered. Even if the generated photos are more appealing and closely resemble

https://code.earthengine.google.com/93e8cd71bbc2e58584f04645e8690279
https://code.earthengine.google.com/93e8cd71bbc2e58584f04645e8690279
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the desired spectral signatures of various land cover types, using atmospherically adjusted
images from several satellite missions may lead to an image mismatch.

Observed vegetation pixels may have noise, making it challenging to classify vegetation
using remotely sensed images. It often consists of a combination of spectral signatures
produced by various elements seen at a specific time and place. Physical limitations of
the satellite sensors, such as their spectrum and spatiotemporal resolution, as well as
systematic mistakes in the data processing pipeline, are additional variables that contribute
to spectral mixes. Numerous non-stationary events are to blame for the spectral signatures
of observed vegetation, making it difficult to anticipate with any degree of accuracy.

2.3 Data acquisition and cloud servers

Every day an immense amount of data is generated from all kinds of remote sensors,
such as satellites, aircraft, and UAVs. These data need to be processed and interpreted
to understand a broader quantity of users. The activity of downloading and processing
these datasets in a standard desk computer is often unfeasible due to data storage and
processing limitations that these kinds of systems have. This kind of problem is addressed
when we use cloud computing. Many advances related to Big Data applied to Remote
sensing, and Deep learning occurred in recent years. One of these moments of advance was
the opening to the public of the Platform Google Earth Engine (GORELICK et al., 2017),
which is a platform for planetary-scale scientific research of geographical datasets. It is
possible to develop algorithms and use a powerful computer to process and analyze vast
quantities of data, creating visual interpretations that a broader audience can understand.
According to Gorelick N. Earth Engine consists of a multi-petabyte analysis-ready data
catalog combined with a high-performance, intrinsically parallel computation service. It is
accessed and controlled through an Internet-accessible application programming interface
(API) and an associated web-based interactive development environment (IDE) that enables
rapid prototyping and visualization of results. We also have other available cloud computing
options such as Sentinel Hub (SENTINEL, 2022), Open Data Cube (KILLOUGH, 2018),
System for Earth Observation Data Access, Processing, and Analysis for Land Monitoring
SEPAL (SEPAL, 2022).

The present research is related to a broad range of sensors. Including an Aircraft sensor
with 10cm spatial resolution and Red, Green, and Blue bands, an UAV sensor with ≈ 1cm
of spatial resolution and Red, Green, and Blue bands. And a satellite sensor with 4.77m
resolution and Red, Green, Blue, and NIR bands (PLANET, 2017).
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2.4 Methods of vegetation detection from images

Specialized algorithms, frequently modified to recognize specific characteristics and
find abnormalities, are necessary for multi-spectral satellite sensors and openly available
data in raw form satellite images. The primary causes for which satellite data. Processing
is challenging because satellite photos show a complex mixture of natural and artificial
activities, many of which are dynamic and interfere with one another. The technical restric-
tions of the sensors and data processing pipelines frequently constrain the observations
produced. Before any useful information can be gleaned from the satellite data, several
types of noise or gaps in the measurements caused by the presence of clouds, aerosols,
complex topography circumstances, and technical sensor constraints must be resolved.

Assessments have been made during the last decade to establish global scale forest
coverage (HANSEN et al., 2013; SEXTON et al., 2013; KIM et al., 2014; SONG et al.,
2018; VANCUTSEM et al., 2021). As technologies advances, we have new capabilities
and opportunities to Map and quantify our forestry resources and perceive how it is
changing as time passes. Accurate and fully automated detection of forest coverage from
multi-temporal satellite data at high spatial resolution from EO data is a complex task. For
efficient and accurate forest detection, we need also to address issues of global objectivity,
and applicability and provide access for a broad range of users.

Spectral signatures of vegetation in most clear-sky observations are very distinctive.
They can easily be detected even using only Top of atmosphere (TOA) data products.
TOA reflectance data provides information about the reflectance of the Earth’s surface as
seen from space, which is used for applications such as monitoring vegetation health and
change, tracking land-use changes, and detecting mineral deposits (AGREEMENT, 2015).

In order to map land cover, monitor crop quality, and identify changes in land use,
surface reflectance data is utilized to provide information on the reflectance of the Earth’s
surface as seen from the ground. By comparing TOA and surface reflectance data, re-
searchers can learn more about the Earth’s surface and make more precise observations
about changes over time. TOA and surface reflectance data can be combined with other
data sources, such as temperature and precipitation data (AGREEMENT, 2015).

However, the sensor’s limited spectral, spatial, and radiometric resolution and many
other factors may significantly influence the accuracy of the detected vegetation. Existing
methods for vegetation detection from multi-spectral satellite data use that vegetation
significantly reflects most radiation at near-infrared wavelengths. This fact makes it easy to
detect vegetation employing spectral indices, such as the Normalized Difference Vegetation
Index (NDVI) (JR et al., 1974).



Chapter 2. Brief overview of remote sensing
for vegetation monitoring 27

NDV I = (pRed − pNIR)/(pRed + pNIR) (2.1)

Where pRed and pNIR correspond to the spectral reflectance of the Red band and of
the NIR band, the index values vary between -1 and 1, with vegetation appearing mostly
when the index value is greater than zero. The NDVI is present as a reference for index
interpretation of data, but many more indexes exist for a broad range of applications. Such
as the leaf area index (LAI), proposed by (WANG et al., 2007), which is used to measure
processes that occur on the surface of the plants, such as photosynthesis, evaporation,
transpiration, and to estimate terrestrial ecosystem net primary production, but also is a
crucial parameter in models of vegetation and carbon-circling. Besides these, we have a
wide variety of indexes for a broad range of applications (HENRICH et al., 2012).

Detecting vegetation from remote sensor images is simple, but doing this for noisy
images is challenging. When applied to real-world satellite imagery, most existing methods
require manual tuning and, in general, need to be significantly adjusted to be used for
planetary-scale analysis. No method works perfectly for all land use types and atmospheric
conditions. Most of the processes that occur in the same area and are observed by the
satellite sensor are random, with unknown distribution, and very hard to model using
existing methods. However, some recent efforts in applying more advanced statistical
learning methods, such as Bayesian Networks (MELLO et al., 2010), Conditional Random
Fields (WALLACH, 2004), Markov Random Fields (CLIFFORD, 1990), Deep Learning
(GOODFELLOW; BENGIO; COURVILLE, 2016) and transformers (VASWANI et al.,
2017) look very promising.

2.5 Deep Learning

Several frameworks,such as KERAS (GÉRON, 2019), TensorFlow (ABADI et al., 2015),
PyTorch (PASZKE et al., 2017) have emerged as a result of the growth in the capacity
of GPUs to perform calculations more quickly than the CPU over the past years. Deep
neural networks, also known as "Deep Learning," have recently gained popularity. When
working with images, a neural network is trained to carry out a task by extracting the
features of these images.

Therefore, when working with computer vision, it is very usual to use Convolutional
Neural Networks, which are specific networks to work with image datasets based on
the characteristics extracted from the images, can infer something. Among the networks
intended for use are the convolutional neural networks (LECUN; BENGIO et al., 1995;
SIMONYAN; ZISSERMAN, 2014; KATTENBORN; EICHEL; FASSNACHT, 2019). These
network architectures have been used in image and video processing to identify objects in
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images by layering convolutional images of various sizes. The operation structure of each
design varies depending on the dataset and computing power. Since these convolutional
architectures can be applied to both small and big image bases, the network can recognize
objects more accurately when the sample size for each object is larger but also increasing
the computational cost of processing.

Recently a new architecture is being used for image processing that are called Trans-
formers. This is a type of neural network architecture that was introduced in the paper
"Attention Is All You Need" by Google researchers in 2017 (VASWANI et al., 2017). The
architecture is based on the idea of self-attention, where the network is able to weigh
the importance of different parts of the input when making a prediction. This allows the
network to effectively process sequential data, such as natural language, where the order
of the words is important. Transformers networks have been used in a variety of remote
sensing applications, including vegetation mapping. In this context, the goal is typically
to use satellite or aerial imagery to map the distribution and type of vegetation in a given
area.

2.6 Unmanned Aerial Vehicles (UAVs)

The advent of the accessibility of UAVs and satellite imagery to a broader audience
created a scenario of new possibilities for obtaining EO data and developing technologies.
Moreover, do not bring up some of the previously discussed problems, such as clouds and
object interference. Not long ago, when UAVs were not accessible to a broader public in
terms of costs and knowledge of the technology and the utilities of UAVs. Commercial
drones take flight supported by decades of military research and development. The first
is devoted to developing SAGE. The first continental comprehensive computerized and
automated enemy detection system was created during the 1950s by the U.S. military
to detect long-range Soviet atomic bombers (PACKER; REEVES, 2013). A UAV is the
prominent part of a whole system that is necessary to fly the aircraft. The fact that no
pilot is physically present in the airplane does not imply that it can fly independently.

UAVs provide flexibility in data collecting since users may program flights according
to their needs, and they are less expensive than other systems. UAVs also provide high
levels of detail when collecting data, also the capacity to embed RGB, multispectral,
hyperspectral, thermal, and LiDAR sensors, and the capacity to collect data from hard-
to-reach locations,in addition to those sensors built into UAVs are capable of producing
data from various viewpoints and altitudes. Along with other factors, these traits enable
cameras to capture images with a more comprehensive dynamic range than other sensing
systems. This enables the same object to be seen from various perspectives, affecting not
only its spatial and spectral information but also its form, texture, pattern, geometry,
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illumination, and other attributes. This makes multi-domain detection difficult. Therefore,
research shows that Deep Learning (DL) is the most popular remedy for addressing these
drawbacks.

In areas where field reconnaissance is challenging, vegetation surveys utilizing UAV
are feasible and capable of an exact community division, as presented in Chapter 4. The
UAV method is efficient and will help to advance research techniques in the future. It may
also lower research expenditures by reducing the number of field survey days and staff
required.

2.7 Smart cities

Urbanization displays a massively increasing global trend. According to data from
the UN (ECONOMIC; AFFAIRS, 2019), more than half of the world’s population habit
urban areas, and by 2050, it is projected that 68% of the world’s population to be urban.
The cities can be interpreted as a complex system incorporating people and diffusion and
exchanging work, assets, capital, and information. One of the essential aspects of a city
is the vegetation; they provide the city’s residents with several environmental and social
services, supporting the development and improving inhabitants’ quality of life (La Rosa;
WIESMANN, 2013; JENNINGS V.; YUN, 2016; ARANTES et al., 2021; JIM; CHEN,
2009; CHEN; WANG, 2013). The types of services that the urban forests provide can be
cited as regulating and maintaining local climatic conditions by reducing the formation of
urban heat islands, providing habitat for local biodiversity, provisioning resources (e.g.,
wood, food, and biomass), cultural and historical values and also scenic landscapes (BARÓ
et al., 2014; MCHUGH et al., 2015; KARDAN et al., 2015; FENG; LIU; GONG, 2015;
ALONZO et al., 2016).

One of the significant problems associated with crescent urbanization is the loss of
vegetated areas within the city, which can profoundly impact the urban environment. The
loss of vegetation can lead to increased temperatures, reduced air quality, and decreased
biodiversity (BARÓ et al., 2014). It can also contribute to the urban heat island effect,
increasing energy consumption and exacerbating the impacts of extreme weather events.
Additionally, the loss of vegetation can reduce the ability of the urban landscape to absorb
and filter rainwater, leading to increased runoff and flooding (??). Furthermore, the loss
of vegetation can reduce the ability of the urban landscape to provide ecosystem services
such as carbon sequestration, pollination, and recreation opportunitie (BARÓ et al., 2014).
To address these problems, urban planners and designers must consider the importance of
maintaining and enhancing vegetated areas within the city by integrating green spaces,
rooftop gardens, and other forms of urban vegetation into the built environment. Rapid
urbanization severely hinders city dwellers’ sustainable growth and living standards.
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Smart cities create comprehensive solutions for urban ecosystems using data gathered
from many sensors. As a result of advances in the internet of things (IoT) and Deep
learning technology, interest in urban studies and applications has significantly increased.
Deep learning approaches, which are sophisticated machine learning methodologies, offer
an interactive framework that makes data mining and knowledge discovery tasks easier,
particularly in computer vision and natural language processing. Advanced technology has
already been applied to monitoring, assessing, and analyzing environmental and natural
resource management.

With this thesis we want to address the Smart Cities vegetation problem by using
remote sensing and deep learning techniques to quantify the vegetated areas of a city.
Chapter 3 brings an example of how we can connect Deep learning and Smart cities for
environmental monitoring.
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Abstract: Urban forests are an important part of any city, given that they provide several environ-
mental benefits, such as improving urban drainage, climate regulation, public health, biodiversity,
and others. However, tree detection in cities is challenging, given the irregular shape, size, occlusion,
and complexity of urban areas. With the advance of environmental technologies, deep learning
segmentation mapping methods can map urban forests accurately. We applied a region-based CNN
object instance segmentation algorithm for the semantic segmentation of tree canopies in urban
environments based on aerial RGB imagery. To the best of our knowledge, no study investigated the
performance of deep learning-based methods for segmentation tasks inside the Cerrado biome, specif-
ically for urban tree segmentation. Five state-of-the-art architectures were evaluated, namely: Fully
Convolutional Network; U-Net; SegNet; Dynamic Dilated Convolution Network and DeepLabV3+.
The experimental analysis showed the effectiveness of these methods reporting results such as pixel
accuracy of 96,35%, an average accuracy of 91.25%, F1-score of 91.40%, Kappa of 82.80% and IoU
of 73.89%. We also determined the inference time needed per area, and the deep learning methods
investigated after the training proved to be suitable to solve this task, providing fast and effective
solutions with inference time varying from 0.042 to 0.153 minutes per hectare. We conclude that the
semantic segmentation of trees inside urban environments is highly achievable with deep neural
networks. This information could be of high importance to decision-making and may contribute to
the management of urban systems. It should be also important to mention that the dataset used in
this work is available on our website.

Keywords: remote sensing; image segmentation; sustainability; convolutional neural network;
urban environment
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1. Introduction

Urbanization displays a massively increasing global trend. According to data of the
UN [1], more than half of the world’s population habit urban areas, and by 2050, it is
projected to 68% of the world’s population to be urban. The cities can be interpreted as
a complex system that incorporates people and diffusion and exchange of work, assets,
capital, and information. One of the essential aspects of a city is the vegetation; they
provide the residents of the city with several environmental and social services, in this way
supporting the development and improving inhabitants quality of life [2–6]. The types of
services that the urban forests provide can be cited as regulating and maintaining local
climatic conditions by reducing the formation of urban heat islands, provide habitat for
local biodiversity, provisioning resources (e.g., wood, food, and biomass), cultural and
historical values and also scenic landscapes [7–11]. According to [12], urban forests can
be categorized in three primary forms, such as (i) forest remnants occurring either in the
urban perimeter or in the urban-rural interface and contains a large number of trees, (ii)
green areas over a given landscape that presented different tree species devoted to meet
social, aesthetic and architectural benefits, ecological needs and even economic benefits
and (iii) street trees that are any trees along public roads, whether on sidewalks or in
flowerbeds. Urban growth is usually associated with forest remnants suppression leading
to ecosystem stress and biodiversity losses [13]. In the urban environment, vegetation
suppression is mainly correlated to the urban process of growth and often results in
impervious areas and brings other negative impacts for the environment, such as urban
biodiversity loss and changes in the hydrodynamics of the cities [14]. Therefore, mapping
urban forests are essential in order to propose strategies that optimize citizen’s quality
of life, city hydrodynamics, and biodiversity by preserving and improving this valuable
ecosystem [2,15].

The capability of detecting individuals and groups of trees is essential for many ap-
plications in forest monitoring according to [16], such as resource inventories, wildlife
habitat mapping; biodiversity assessment; and threat and stress management. Never-
theless, the task of mapping trees, especially for an urban context, is a crucial procedure
for environmental planning [10,17]. The urban tree segmentation task refers to the auto-
mated classification of each pixel of a given image into a tree or background, and that is a
challenging problem. As highlighted before, urban forests are a particular form of forest
with unusual characteristics as they can be isolated, densely, or sparsely distributed and
mixed with other urban features [18]. All these characteristics make automated urban
forest mapping a complex computational task. Therefore, it requires high spatial resolution
images and a robust machine learning process to differentiate them as objects. The consoli-
dated approach for mapping trees using remote sensing refers to the use of data acquired
from sensors embedded in satellite, airplane, or Unmanned Aerial Vehicles (UAV) [19–24].
Remote sensing can provide valuable data at different acquisition levels to support policies
related to urban forest mappings such as forest health, regulation, climate change mitiga-
tion, and long-term sustainability. As a result, continuous remote sensing tracking of forest
patterns allows for cost-effective periodical assessment of vegetated areas [25], supporting
decision making.

Artificial intelligence and the remote sensing field are allies of an extended period. As a
subgroup of the machine learning area, deep neural networks improved performance for ex-
tracting information from images. Deep learning-based methods are evolving continuously,
and their high performances being confirmed in several fields of applications [26–33]. As
an example of advances in this field of study, we will briefly describe some works. Ref. [34]
proposed a methodological approach for detecting individual fruits using a pixel-wise seg-
mentation method based on Mask R-CNN and multi-modal deep learning models. It used
RGB and HSV images, and the results revealed a more precision score when deep learning
models are trained with RGB and HSV datasets altogether. Ref. [35] opens opportunities
for a better understanding of the on-ground feature mapping by using simplified deep
learning methods. By adopting high spatial resolution remote sensing data and models of
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dynamic multi-context segmentation approach, based on convolutional networks, Ref. [35]
research showed improvements in pixel-wise classification accuracy when compared to
state-of-the-art deep learning methods. One research [30] evaluated five methods based
on deep fully convolutional networks using high-spatial-resolution RGB images to map a
specific threatened tree species finding out an overall accuracy ranging from 88.9% to 96.7%.
The research of Zamboni et al. [36] propose the evaluation of novel methods for single tree
crown detection. A total of 21 methods were investigated, including anchor-based (one
and two-stage) and anchor-free state-of-the-art deep-learning methods. Here, the authors
focused on generating bounding boxes in each tree, not in the tree segmentation.

The accurate segmentation of urban forests is a relevant matter, as it aims to support
management decisions related to urban environmental planning. So this work intends to
provide a low-cost and effective method of mapping trees inside the urban areas. Our study
area is a metropolitan region from Brazil, inserted in Cerrado Biome called Campo Grande.
The trees of the metropolitan region are very diverse, having as many as 61 cataloged tree
species that are common encountered in the city center and avenues [37]. Cerrado is a
nature hotspot that is rich in biodiversity, has endemic species (species of plants or animals
that only occur in that Biome), and whose maintenance is threatened. Therefore, they are
places that need more attention from conservation programs. The Cerrado, together with
the Atlantic Forest, are the two areas considered as hotspots in Brazil. The expansion of
agriculture, especially in the Brazilian Cerrado, which has an ideal climate for cultivating
various crops, generated pressure to suppress natural areas of this Biome, increasingly
threatening its existence. The monitoring through technology allows for more effective
planning of actions and acts quickly to curb vegetation removal without permission.

Therefore, our originality comes from the dataset and the exertion of deep learning
algorithms to improve the nature conservation efforts in this region, and our primary con-
tribution is related to the investigation of state-of-the-art semantic segmentation methods
to detect trees in urban areas. For this task, we used data with a high spatial resolution
(Ground Sample Distance (GSD) of 10 cm) inside an urban area inside the Cerrado biome
and used five state-of-the-art deep learning architectures to process the data. Deep learning-
based approaches designed to tackle this task receive, as input, an image and return as
output, another image, generally with the exact size of the input data with each pixel
associated with one class. We choose to use deep learning because they present a better
performance in semantic segmentation and scene interpretation tasks over traditional
machine learning and trained professionals in many fields of science as demonstrated
by [38–42].

The rest of this paper is organized as follows: Section 2 provides detailed info of
the urban area and methods applied; Section 3 explored the results; Section 4 argues the
implications of the results of the methods applied in this research and in Section 5 we
conclude the paper and provides some futures directions for this and other studies.

2. Materials and Methods

Our workflow was divided into five main stages (Figure 1). In (a) we have the RGB-
imagery acquisition by an Airplane flight performed in the metropolitan region of Campo
Grande, State of Mato Grosso do Sul, Brazil, in the heart of the Cerrado Biome. (b) presents
a geometric correction of the images and orthophotos generation. In (c), annotation of the
trees in the orthophotos, and preparation of the data by splitting it into test and training
subsets. In (d), evaluation of five state-of-the-art deep neural networks selected for the
proposed task. Finally, in (e), comparison of the performance of the methods.

2.1. Data Acquisition and Image Processing

The imagery-dataset was acquired with an airplane flight performed in Campo
Grande, Mato Grosso do Sul. This flight took place in 2013 and created a total of 1394
RGB orthoimages with 5619 × 5946 pixels each, with dimensions of 561.9 × 594.6 m and
a ground sampling distance of 10 cm. It is important to note that the images are not
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overlapped. Inside our study area, the urban forests are randomly distributed and mixed
between the constructions (Figure 2). Inside the study area, there are a substantial diversity
of tree species, many of them are not natives trees, as the region is a neighborhood area
where citizens tend to plant the trees following some local set of rules as of the size of the
tree, but besides that, they tend to plant trees that pleases then the most.

Figure 1. Workflow summarizing the fundamental steps of the conducted approach. Adapted
from [43].

40.0°S

30.0°S

20.0°S

10.0°S

0.0°

10.0°N

70.0°W 60.0°W 50.0°W 40.0°W

Figure 2. Overall visualization of the study area, the location is inside the metropolitan region of Campo Grande, Mato
Grosso do Sul, Brazil. And also in color a visualization of the two base images used to make the labels of the tree canopies.
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For the classification quality assessment of the deep learning algorithms, we select two
images from this dataset and manually labeled all the trees presented in them, mapping
all the tree cover in these two images. The images have 33.4 hectares (ha) each and a tree
cover of 4.8 ha in one image and 3.8 ha in the other. All tress are randomly distributed
in the area, making a ratio of 12.8% of the dataset composed of our target object and the
rest being background, that is composed of roads, buildings, cars, houses, and many other
elements that compose a typical urban environment, e.g., paths, districts, edges, nodes,
and landmarks).

2.2. Semantic Segmentation Methods and Experimental Setup

This section presents five state-of-the-art deep learning architectures evaluated in our
study case. These architecture were the same applied in the work of [43], our previous work
with precision agriculture, but now we want to attend the urban forest context. To better
visualize and analyze CNN’s architectures, we organize the CNN structure illustrations
with colored blocks. Each block represents a processing layer with the data as described in
Figure 3.

Figure 3. Building blocks used to illustrate the different CNNs layers.

Fully Convolutional Network (FCN): FCN architecture is presented in Figure 4. It was
proposed by [44]. This deep network creates a classification map with a set of convolutional
layers returning a spatially reduced result. After that, it applies deconvolution layers to
upsample the initial classification and produce a dense prediction, restoring the image’s
original resolution.

Figure 4. Fully Convolutional Network (FCN) architecture. Adapted from [43,44].

U-Net and SegNet: According to [43], the U-Net architecture was the first network to
propose an encoder-decoder architecture to perform semantic segmentation tasks. This
deep network was created by [45] to segment biomedical images. To generate an initial
prediction map, are used the encoder and max-pooling layers with feature extraction. The
encoder consists of a stack of convolution, and the decoder comprises convolutions, decon-
volutions, and unpooling layers in a symmetrical expanding path, using deconvolution
filters to up-sample the feature maps. An illustration of this architecture is presented
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in (Figure 5). SegNet is also an encoder-decoder network path like U-Net, but with the
replacement of the deconvolution layers by unpooling operations to increase the spatial
resolution of the initial prediction map generated by the encoder. Ref. [46] proposed this
architecture based on the VVG 16 network developed by [47]. A scheme of deep network
SegNet is shown in (Figure 6).

Figure 5. U-Net architecture. Adapted from [43,45].

Figure 6. SegNet architecture. Adapted from [43,46].

DeepLabV3+: The DeepLabV3+ [48] starts with three blocks composed of two convo-
lutions and one polling layer that performs the feature extraction and an initial prediction
map. These features are then processed by a particular layer, called Atrous Spatial Pyramid
Pooling (ASPP) introduced in [49]. This technique involves employing atrous convolution
in parallel to extract features at multiple scales and alleviate the loss of spatial information
due to prior pooling or convolutions with striding operations. The data is then processed
with features extracted from the first pooling layer and refined by one extra convolutional
layer. Then three convolutional layers process the concatenated segments upsampled
by a bilinear interpolation producing the final prediction map. For more details, see
Figure 7 [48].

Figure 7. DeepLabV3+ architecture. Adapted from [43,48].



Remote Sens. 2021, 13, 3054 7 of 19

Dynamic Dilated Convolutional Network (DDCN): Proposed by [35], the DDCN is
designed to preserve the input image resolution. Ref. [43] describe this network in more
detail. However, in summary, the Dynamic Dilated Convolutional Network uses a multi-
scale training strategy that implements dynamically-generated input images to converge a
dilated model that does not downsample the input data due to a specific configuration of
stride and padding. The model has eight dilated blocks; each block comprises a dilated
convolution and a pooling layer; the blocks are followed by a standard convolutional layer
responsible for the final prediction map. In each iteration of the training procedure, a
dimension is randomly selected from this distribution and used to create a new batch. The
model captures multi-scale information by processing these batches with a pre-determined
size, advancing in the processing phase. The network selects, based on scores obtained
during the training phase for each evaluated input size, the best image resolution. Then
the DDCN processes the testing images using batches composed of the images with the
best-evaluated size (Figure 8).

Figure 8. Dynamic Dilated Convolutional Network (DDCN) architecture. Adapted from [35,43].

2.2.1. Experimental details

We adopted the same training/trial protocol for all CNNs. All networks used in
this research have been trained from scratch (i.e., without pre-trained weights from other
datasets, like ImageNet, for example). We used 1938 input patch sizes of 256 × 256 pixels,
with 388 patches for the test, 1162 for train, and 388 for validation, a distribution of approx-
imately 20%, 60%, and 20% respectively. It is important to note that additional input patch
sizes were tested in an experimental phase, but the results did not change considerably
and only increased the training time. All approaches used the same set of hyperparam-
eters during training, which was defined based on previous analyses. Specifically, the
learning rate, weight decay, momentum, and iterations were 0.01, 0.005, 0.9, and 200,000,
respectively. The model is optimized using stochastic gradient descent (SGD). To assist
the convergence process and prevent overfitting (Overfitting is a concept used to refer to a
model that adjusts too well to the training data, but it does not generalize to the unseen
before dataset, i.e., a test dataset), after 50,000 iterations, the learning rate was reduced
following an exponential decay parameter of 0.5 by an SGD scheduler. Aside from this,
we used rotation, noise, and flip (as in [50]) for data augmentation, and we were capable
of augmenting the dataset by six times. With the data augmentation technique, we can
make the CNN classification more robust and generalize better. In Figure 9, we can see the
schematic diagram for the evaluation process.
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Figure 9. Schematic diagram of the evaluation process.

All deep learning-based models exploited in this work were implemented using the
TensorFlow [51], a Python framework conceived to allow efficient analysis and implemen-
tation of deep learning with Graphics Processing Units (GPUs). All experiments conducted
here were performed on a 64-bit Intel i7-8700K@3.70GHz CPU workstation, 64 GB memory,
and NVIDIA® GTX 1080 GPU with 12Gb of memory, under a 10.0 CUDA version. Debian
4.195.98-1 version was used as the operating system.

2.2.2. Evaluation Metrics

The networks were evaluated using five different classification metrics: pixel accuracy,
average Accuracy, F1-score, Kappa, IoU/Jaccard. The variables TP, TN, FP, FN stand for the
number of true positives, true negatives, false positives and false negatives, respectively. In
our analysis, positives and negatives refer to the pixels assigned by the underlying classifier
to the trees and background classes, respectively. Such positives and negatives are true or
f alse, depends on whether or not they agree with the ground truth, respectively.

The Pixel accuracy is given by:

Pix.Acc. =
TP + TN

TP + TN + FP + FN
(1)

The average accuracy (Av. Acc.) is the mean accuracy result given by class, in this case
we have 2 classes tree and background.

The F1-score is given by:

F1 = 2× P× R
P + R

, (2)

where P and R stand for Precision and Recall, respectively, and are given by the ratios
present in Equations (3) and (4):

P =
TP

TP + FP
(3)

R =
TP

TP + FN
(4)

The Cohen’s Kappa statistic (K) proposed by [52], tells you how much better your clas-
sifier is performing over the performance of a classifier that guesses at random according
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to the frequency of each class. The mathematical formulation of this metric is given by a
balance between a positive and negative response, as follows:

Ppositive =
TP + FN

TP + TN + FP + FN
∗ TP + FP

TP + TN + FP + FN
(5)

Pnegative =
TN + FN

TP + TN + FP + FN
∗ TN + FP

TP + TN + FP + FN
(6)

Pe = Ppositive + Pnegative (7)

K =
Pix.Acc.− Pe

1− Pe
(8)

The Union Intersect (IoU), also known as the Jaccard Index, is frequently used as a
precision metric for semantic segmentation tasks [53,54]. In the Reference and the Prediction
mask, IoU is indicated by a ratio of the number of pixels in both masks to the total number
of pixels in:

IoU =
|Re f erence ∩ Prediction|
|Re f erence ∪ Prediction| (9)

3. Results

In this section, we present the results of the experimental evaluation of the selected
semantic segmentation approaches. In (Section 3.1) we made a quantitative analysis with
the metrics described in (Section 2.2.2), the (Section 3.3) presents a visual analysis of the
segmentation outcomes, and in (Section 3.2), we assess the computational efficiency of
each method.

3.1. Performance Evaluation

The evaluated deep learning methods returned similar results for the proposed ap-
proach. Ranging from 96.18% to 95.56% for pixel accuracy, 91.25% to 88.80% for Av. Acc.,
91.40% to 89.91% for F1-score, 82.20% to 79.83% for Kappa and 73.89% to 70.01% for IoU.
Results of the classification for the test set are presented in Table 1.

Table 1. Classifiers’ results for each evaluation metrics using the test set of patches, while classifying
tree canopies.

Set Network Pix. Acc. Av. Acc. F1-Score Kappa IoU

Test.

FCN 0.9614 0.9008 0.9123 0.8247 0.7342

SegNet 0.9607 0.9125 0.9130 0.8260 0.7370

U-Net 0.9597 0.9082 0.9104 0.8208 0.7301

DDCN 0.9556 0.8880 0.8991 0.7983 0.7001

DeepLabV3+ 0.9618 0.9059 0.9140 0.8280 0.7389

A slight difference indicates that DeepLabV3+ was the best classifier method from
a quantitative perspective, returning the best available results for the chosen metrics. In
the recent few years, the architecture DeepLabv3+ has been regarded as state-of-the-art in
semantic segmentation. So it is no surprise that it achieved the best performance among all
tested architectures in our experiments, both in terms of absolute average accuracies as
in terms of variability for the test set. Nevertheless, it also is accurate to say by analyzing
the results presented in Table 1 that all of the five state-of-the-art networks are capable
of segmenting trees inside a Cerrado urban environment in a satisfactory way with the
proposed imagery dataset. These deep neural networks can separate tree covered-area
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from other objects inside an urban environment while maintaining the original resolution
of the image input is an important characteristic, making it possible to extract valuable
information that could be used to support urban planning strategies.

Figure 10 presents the confusion matrix of all the CNN methods used in this research,
which was used to derive the metrics presented in Table 1.

(a) FCN (b) SegNet (c) UNet

(d) DCNN (e) DeepLabV3+

Figure 10. Confusion Matrix for all the analysed ConvNets.

Finally, we present in Figure 11 the accuracy and loss curves. We can see that the
FCN, UNet, and SegNet performed similarly with stable slight variation and close to
the minimum loss value after 100,000 iterations or half the way of the learning process
established. The DCNN presented some increase in loss after 100,000 iterations. After the
learning rate was reduced in the lasts 50,000 iterations by the SGD scheduler, it reached
its minimum value, and the loss fluctuations were reduced. Moreover, the DeepLabV3+
became stable after 100,000 iterations with the minimum loss observed.

3.2. Computational Complexity

This section compares the methods in terms of computational efficiency and computa-
tional load for training and inference. Table 2 presents the average training and inference
times measured on the hardware infrastructure described in Section 2.2. Considering that
the methods were trained with the same optimizer and learning rates, these results are
highly correlated with the network depth and the selected batch size. For instance, the
DDCN network is deeper than the others, and the consequence is that it took longer than
the other networks for training and inference.

The most significant variation of performance is concerning the number of parameters
and with training and inference time. Despite being the best architecture in performance,
According to Table 2, DeepLabv3+ needed more parameters than the other architectures,
about 2.75 times more parameters than the U-Net, the least requiring one. The need for a
more significant number of parameters often implies a higher demand for training samples
that our dataset or another dataset may not have met that the methods present in this
research paper may be applied, possibly causing the DeepLabV3+ architecture to perform
below its potential.
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Figure 11. Convergence of the evaluated networks.

Table 2. Number of Parameters and Processing Time of the proposed approaches. The training time
represents the results for the test set of each method. The inference time stands for the time taken by
each model to make predictions for each image.

Method FCN U-Net SegNet DeepLabV3+ DDCN

Number of Parameters
(in millions) 3.83 1.86 2.32 5.16 2.08

Training Time
(GPU hours) 485 450 472 486 500

Inference Time
(GPU min.) 1.4 1 1.1 1.4 5.1

Inference Time
(CPU min.) 1.9 1.3 1.5 1.9 6.2

Inference Time
(GPU min./ha) 0.042 0.030 0.033 0.042 0.153

Inference Time
(CPU min./ha) 0.057 0.039 0.045 0.057 0.186

3.3. Visual Analysis

Some features maps, learned by the convolutional layers, are presented in Figure 12.
Specifically, this image presents low-, mid- and high-level feature maps learned by the
first, a middle, and the last layers of the networks, respectively. We can see the each CNN
performs very differently from one another.

Figures 13 and 14 show an example of the results for the chosen methods with cropped
images from our dataset that came to represent common occurrences of vegetation inside an
urban environment. References are presented on the left row of the cropped images in the
first line of both Figures, the annotated label is in the second line, and each subsequent line
presents the segmentation produced by the CNN. We chose these images to represent the
visual segmentation of the dataset because they are different in their content and represent
common situations that CNNs may encounter while segmenting a tree in urban areas.
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Figure 12. Input images and some produced (upsampled) feature maps extracted from initial, mid, and end layers of the
networks. From top to bottom: FCN [44], UNet [45], Segnet [46], DeepLabV3+ [48], and DCNN [35]. The high level column
presents an approximation of the final result of CNN classification.
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In row (a) of Figure ??, there is a parking lot background. Inside this parking lot, we have
one large group of trees with sparse distribution, one singular tree in the parking lot, one
tree truncated in half by the picture frame, and a shadowed area at the top of the image.

The white spots, or false negatives, compose a large area of the photograph, meaning that
the CNNs missed a lot of our intended objective, classifying as background much of the

trees in this area. However, it is essential to note that shadows were not a problem for any
CNNs in this particular case. Another issue was related to the shape of the object.

The SegNet, for example, returned a worse response related to it. All the CNNs localized
the truncated tree. The errors mainly occurred at the canopies’ edges, meaning that the

CNNs missed information regarding vegetation borders. In row (b) of Figure ??, the image
possesses a greater variety of backgrounds; a patch of grass, a patch of sidewalk, a patch of

road, a car, and a patch of house, and more shadows. Furthermore, there are two large
groups of trees with tension lines crossing them in this image, and even a single tree near
one of the groups and a small one crop at the top of the image. This region, in particular,

highlighted some of the flaws in the segmentation results. The DeepLabV3+ and the
DDCN returned higher FN, especially in the shadowed areas. Still, most of the FN cases of
this patch are inside the tree group at the bottom, meaning that the CNNs had a hard time

separating singular trees in this context. In row (c) of Figure ??, there is a variety of
backgrounds as diverse as in row (b), but a uniform distribution of trees inside the image,
with four medium size and contiguous groups of canopies. Here, the CNN’s presented

fewer mistakes than on the other examples, as most of the errors were FP in the edges of

Figure 12. Input images and some produced (upsampled) feature maps extracted from initial, mid, and end layers of the
networks. From top to bottom: FCN [44], UNet [45], Segnet [46], DeepLabV3+ [48], and DCNN [35]. The high level column
presents an approximation of the final result of CNN classification.

In row (a) of Figure 13, there is a parking lot background. Inside this parking lot, we
have one large group of trees with sparse distribution, one singular tree in the parking
lot, one tree truncated in half by the picture frame, and a shadowed area at the top of
the image. The white spots, or false negatives, compose a large area of the photograph,
meaning that the CNNs missed a lot of our intended objective, classifying as background
much of the trees in this area. However, it is essential to note that shadows were not a
problem for any CNNs in this particular case. Another issue was related to the shape of
the object. The SegNet, for example, returned a worse response related to it. All the CNNs
localized the truncated tree. The errors mainly occurred at the canopies’ edges, meaning
that the CNNs missed information regarding vegetation borders. In row (b) of Figure 13,
the image possesses a greater variety of backgrounds; a patch of grass, a patch of sidewalk,
a patch of road, a car, and a patch of house, and more shadows. Furthermore, there are
two large groups of trees with tension lines crossing them in this image, and even a single
tree near one of the groups and a small one crop at the top of the image. This region, in
particular, highlighted some of the flaws in the segmentation results. The DeepLabV3+
and the DDCN returned higher FN, especially in the shadowed areas. Still, most of the
FN cases of this patch are inside the tree group at the bottom, meaning that the CNNs
had a hard time separating singular trees in this context. In row (c) of Figure 13, there is a
variety of backgrounds as diverse as in row (b), but a uniform distribution of trees inside
the image, with four medium size and contiguous groups of canopies. Here, the CNN’s
presented fewer mistakes than on the other examples, as most of the errors were FP in the
edges of large groups of trees; with this example, we see that the CNNs perform better in
patches with groups of trees no isolated trees nearby.

In row (a) of Figure 14, we have large tree canopies and a road with a rooftop back-
ground, and all the CNNs performed reasonably well with large canopies segmentation
except for U-Net and the FCN that faced a difficult time segmenting the shadowed areas in
this case. In row (b) of Figure 14, we have a large patch of trees that are beneath a residential
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area, and the networks performed similarly in this case of one large group of trees even
for the false positives case of the shadows, but we can see that in this case, DeepLabV3+
was the most assertive CNN. In row (c) of Figure 14, we have a small patch of trees located
beneath houses and cars. As discussed previously, we have the most significant part of the
errors with the isolated and small trees, shadowed areas, and grassed and bush areas.
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Figure 13. Cropped images, labeled canopies and the result map for the cropped image with the
evaluated CNNs. The light red areas are the true positives (TP), the soft grey areas are the true
negatives (TN), the white spots are the false negatives (FN), and the dark red areas are the false
positives (FP).

(a) (b) (c)

Cropped image

Label

FCN

SegNet

U-Net

DDCN

DeepLabV3+

Figure 13. Cropped images, labeled canopies and the resulting map for the cropped image with
the evaluated CNNs. The light red areas are the true positives (TP), the soft grey areas are the true
negatives (TN), the white spots are the false negatives (FN), and the dark red areas are the false
positives (FP).
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Figure 14. Cropped images, labeled canopies and the result map for the cropped image with the
evaluated CNNs. The light red areas are the true positives (TP), the soft grey areas are the true
negatives (TN), the white spots are the false negatives (FN), and the dark red areas are the false
positives (FP).
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In row (a) of Figure 13, there is a parking lot background. Inside this parking lot, we
have one large group of trees with sparse distribution, one singular tree in the parking

Figure 14. Cropped images, labeled canopies and the resulting map for the cropped image with
the evaluated CNNs. The light red areas are the true positives (TP), the soft grey areas are the true
negatives (TN), the white spots are the false negatives (FN), and the dark red areas are the false
positives (FP).
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4. Discussion

A set of state-of-the-art deep learning semantic segmentation approaches was ap-
plied to map urban forests in high-resolution RGB imagery in the urban context. Our
results indicated that the investigated methods performed fairly similarly in this task,
returning a pixel accuracy between 96.18% (DeepLabV3+) and 95.56% (DDCN), an av-
erage accuracy between 96.07% (DeepLabV3+) and 95.56% (DDCN), a F1-score between
91.40% (DeepLabV3+) and 89.91% (DDCN), a Kappa 82.80% (DeepLabV3+) and 79.83%
(DDCN) and IoU between 73.89% (DeepLabV3+) and 70.01% (DDCN). Visually evaluating
the classification map obtained with each network, it is difficult to emphasize an overall
better method. Nonetheless, we have a quantitative advantage for the DeepLabV3+. This
CNN also presented a satisfactory visual result with little noise and false-positives rates
regardless of tree detection. Despite the quantitative results, the DDCN also presented a
smooth visual result.

Most of the evaluated methods returned proximal inference time for both GPU and
CPU tests, except for the DDCN method [35], which took around four times the amount of
time needed to perform the same task. U-Net consistently presented lower inference times,
being the fastest method among all for training and prediction. However, an estimation of
this inference time per area demonstrates how rapidly these neural networks can segment
trees in the given data set once they are trained. This information is vital for precision
image segmentation tasks since this response could be incorporated into decision-making
strategies regarding area size and priority. It should also be noted that the times informed
here are considering the system used to train these methods, see Section 2.2.1.

For a practical approach, the final use of this method is the application in a city to detect
vegetated areas. For our example images, we have a range of pixel accuracy of 96.18% to
95.56%. These remaining percentage not correctly classified in our test dataset is explained
in Section 3.3 as the CNNs are known for producing errors in image-boundaries [55,56].
Moreover, most of the problems faced by the investigated deep networks are related to
shadowy areas, isolated and small trees, and the grass and bush areas inside the images.
Things for the CNN and even for the human operator can be a little ambiguous. Some
solutions for these kinds of problems are the labeled dataset be manually segmented by
more than one operator, creating a more detailed and overlapped map of the trees inside
an area, we also can augment the dataset using techniques, such as the presented in the
Section 2.2.1. The analysis of the classification results shown in Table 1 demonstrates that
the deep neural networks are lacking accuracy if compared to our annotations; the result
of the IoU metric demonstrates this. Regardless, the visual output of the segmentation
methods is rather noisy in some of the patches. Shadows were a problem, even more, when
mixed inside large groups of trees; when they are further away from our object of interest,
CNNs have fewer issues in segmenting them. However, small isolated trees were a higher
challenge for all the networks to deal with, especially when they are inside the same patch
as large groups of trees; all the CNNs tend to miss-classify and even ignore them. The
grass and bush areas were more of a problem when they were near large groups of trees,
and the CNNs might interpret them as a continuation of the tree patches and classify them
as trees, creating false positives.

Possible solutions to contour this problem are to use a higher resolution RGB imagery
dataset and use different kinds of datasets in conjunction. For example, we can use
RGB and LiDAR fusion to create an exact 3D point cloud; these approaches are a hot
topic in autonomous driving vehicles [57,58], for the reason that they have an excellent
capacity for accurate and fast scenery reconstruction. Another approach is the use of
image segmentation methods with multi-spectral, and high spatial resolution sensors, the
exploration of the spectral index for the detection and analysis of vegetation is a mature
topic in remote sensing [17,22,59] and it can also be implemented with Deep learning
approaches inside urban areas for semantic segmentation tasks.
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5. Conclusions

We evaluated five state-of-the-art Convolutional Neural Networks for the semantic
segmentation of urban forests using airborne high spatial-resolution RGB images. The
architectures tested were: Fully Convolutional Network, U-Net, SegNet, Dynamic Dilated
Convolution Network, and DeepLabV3+. The experimental analysis showed the effective-
ness of the methods reporting a very proximal value for all the classifiers, with a mean for
Pixel accuracy of 96.11% average pixel accuracy of 90.70%, F1-score of 91.27%, Kappa of
82.54% and IoU of 73.56%. With the best results being from the DeepLabV+3 architecture.
Our research confirmed that CNNs could segment urban trees from high spatial resolution
remote sensing imagery in the urban context. However, the networks still possess some
limitations in the urban environment.

For future directions and development, we intend to improve the develop methods to
improve the IoU mainly because it was our worst-performing metric. For this, we suggest
creating a supplementary labeling phase created by a different human operator of the same
area and merging the labels. As we have more correct labels, human error cases will be
minimized in the labeling phase, proving a better feature map for the CNNs to work. The
labeling phase of a large and complex image is a classical case of estimation error, and to
overpass it, another stage of the labeling process is then suggested as an alternative.

We further intend to test the generalization and the transferability of the CNN architec-
tures on datasets from different regions, as the urban landscape are diverse in composition
applying the concept of domain adaptation. Future studies should also involve differentiate
tree species, and to perform data fusion with multiple sensors data, such as Li-DAR or
multi-spectral data in addition to the optical RGB data.We also suggest exploring instance
segmentation (detection and segmentation) architectures such as Mask RCNN, Detectron2,
FCIS, BlendMask, and YOLACT. These approaches are also of interest to urban planning
applications, because they can differentiate the urban landscape by object, contributing to
the tree classification by species.
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Abstract 
The use of uncrewed aerial vehicle (UAV) to map the environment increased significantly in the last 
decade enabling a finer assessment of the land cover. However, creating accurate maps of the 
environment is still a complex and costly task. Deep learning is a new generation of artificial neural 
network research that, combined with remote sensing techniques, allows a refined understanding of our 
environment and can help to solve challenging land cover mapping issues. This research focuses on the 
vegetation segmentation of kettle holes. Kettle holes are small, pond-like, depressional wetlands. 
Quantifying the vegetation and 
and biodiversity present in this environment is essential to assess the health of the ecosystems services. 
A machine learning workflow has been developed, integrating a superpixel segmentation algorithm to 
build a robust dataset, which is followed by a set of deep learning architectures to classify eleven plant 
classes present in kettle holes. The best architecture for this task was Xception, which achieved an 
average F1-score of 85\% in the detection and segmentation of the species. The application of solely 
318 samples per class enabled a successful mapping in the complex wetland environment, indicating an 
important direction for future health assessments in such landscapes. 
 
Keywords: Plant species segmentation, deep learning, uncrewed aerial vehicle (UAV), superpixels, image 
segmentation, wetland 

 
 

1 | INTRODUCTION 

 
Uncrewed aerial vehicle (UAV) in combination with automatic image classification offer a great tool to monitor 

vegetation, plant diversity, and related plant traits in high spatial and temporal resolution (Anderson and Gaston (2013); 

Bendig et al. (2015); Sotille et al. (2020); Van Iersel et al. (2018)). This technical-digital combination benefits small-scale 

ecosystems, transition zones, and habitat patches with high spatio-temporal complexity. The possibility of monitoring 

such landscape features created a growing demand of discretization of ecological features and regions and provided 

new potential for conservation planning and political management of environmental areas of interest (Foster et al. 



  
 

(2003); Azpiroz et al. (2012); Dobson et al. (1997)). One of these landscape elements that have high ecosystem 

importance are kettle holes (Figure 1). Kettle holes can be described as depression wetlands that are mostly smaller 

than one hectare and mainly occur at high densities in the agricultural landscapes of the young moraine areas (Kalettka 

and Rudat (2006); Pätzig et al. (2012)). They provide a wide range of ecosystem services, such as the improvement of 

the hydrological cycle, flood control, chemical condition of fresh waters, biotic remediation of wastes acting as an 

biological filter and shelter for local biodiversity (Vasić et al. (2020); Pätzig et al. (2012)). Most of the kettle holes 

experience a seasonal wet-dry cycle and exhibit high potential for the presence of large biological species diversity. 

Thus, due to their position within farmed areas and their high perimeter-area ratio, they are highly vulnerable and 

severely impacted by intensive agricultural practices occurring in their surroundings. They cover up to 5% of the arable 

land of Germany (Pätzig   et al. (2012); Vahrson and Frielinghaus (1998)). There is a demand for a better understanding 

of the impacts of such activities and for a proposition of solutions for a better conservation of these habitats by a 

continuation of sustainable agricultural activities. Furthermore, the functioning and ecosystem services and 

disservices of kettle holes as a result of complex interaction of abiotic and biotic processes within kettle holes and 

among their surroundings needs to be comprehended. 

Regular high-resolution monitoring allows a better understanding of the functioning of these small-scale 

ecosystems and promote the development of effective conservation and management measures. 

Photogrammetry workflows that allow an automated high precision detection of dominant plants species are 

valuable tools to investigate the ecosystem health. Much of the kettle hole area is most of the time not flooded, 

especially during the peak vegetation period at the end of the summer. Therefore, a large percentage of the area 

is covered with emerged plant species such as amphibious or terrestrial plants and can be detected with aerial 

images. 

Efficient workflows for automated vegetation segmentation with UAV imagery already exist and present 

promising results (Casado et al. (2015); Cruzan et al. (2016); Torres-Sánchez et al. (2014)). They are often based 

on RGB and multi-spectral images in combination with shallow or Deep learning (DL) techniques (Turner et al. 

(2018); Chabot et al. (2018); Cen et al. (2019)). DL is a set of techniques that allow computers to learn complex 

patterns from data. These techniques can adapt to changing environments and enable ongoing improvement to 

understand the scene. With the advance of mapping and computer technologies, DL methods are being tested to 

identify patterns in the most varied fields of science Shen et al. (2017); Dos Santos Ferreira et al. (2017); Torres et 

al. (2020); Martins et al. (2021). Thus far, a large amount of training data is needed to train a DL based network for 

subsequent classification Goodfellow et al. (2016). However, the manual labelling of all pixels to extract image 



features for training is troublesome when dealing with imagery from kettle holes due to the visual complexity of 

the features. Even when using high spatial resolution datasets, a human operator has difficulties distinguishing 

between species of plants and assigning each pixel to a class. Therefore, only some parts of each training image 

will be labelled. We used an approach combining unsupervised superpixel segmentation with subsequent 

convolutional neural networks (CNNs) to circumvent this challenge as the complex dataset of the natural 

ecosystem has an abundance of nuances and details. Superpixels group image regions with similar perceptual 

features into clustered regions (Achanta et al. (2012)). Each superpixel is treated as a training dataset. Thereby, 

creating a labelled dataset that the CNN can use to find structured patterns without the need of labelling each 

image in its entirety. 

We classify data from kettle holes to support the understanding and the composition of the ecosystem by 

performing a detailed detection of the flora present to characterize the species in the ecosystem. Our approach 

paves the way to the creation of databases that help to identify environmental factors that influence the health 

of the ecosystem. 

 

2 |MATERIALS AND METHODS 
 

Our workflow can be summarized the following: data acquisition, manual image labeling, superpixel clustering, 

training the CNNs based on the superpixel images and final segmentation of the image with trained CNN models 

(Figure 2).  

2.1 |Dataset 

The data acquisition was performed in the landscape laboratory AgroScapeLab Quillow (ASLQ, Leibniz Centre for 

Agricultural Landscape Research (ZALF)) named after the river Quillow that covers a catchment area of about 170 

km². The region is located in the Central European lowlands, shaped into a hilly landscape by the last ice age. About 

three-quarters of the landscape is used for agriculture, the climate is sub-humid with a negative climatic water balance 

ranging from 1992 till 2019 during which an average of 658 mm of water evaporated and an average of 573 mm 

precipitation fell per year. The mean annual temperature was 8.8°C (Pätzig and Düker (2021)). UAV images were 

collected from 19 of more than 1500 kettle holes in the region. The selected kettle holes are very diverse in their 

morphological and hydrological characteristics and their classification was done according to (Kalettka and Rudat 

(2006)). 

TA B L E 1 Examined plant species classes (including dead plants) and the associated plant life forms and the 



  
 

number of samples, i.e. superpixels, from each class in the unbalanced and balanced superpixel dataset. 

Dominant plant species classes 
included 

(Class) 

Plant life form Unbalanced Balanced 

Carex riparia Helophytes 13626 (16.52%) 318 (9.09%) 

 
Cirsium arvense (L.) Scop., 

Hemicryptophytes 

(nitrophilous perennials) 

 
318 (0.39%) 

 
318 (9.09%) 

Dead plants Helophytes etc. (no woody plants) 1450 (1.76%) 318 (9.09%) 

Oenanthe aquatica (L.) Poiret Amphibian plants 2559 (3.10%) 318 (9.09%) 

 
Others 

Other plants, soil, 

water, stones, crops, etc. 

 
22712 (27.53%) 

 
318 (9.09%) 

Phalaris arundinacea Helophytes 7532 (9.13%) 318 (9.09%) 

Phragmites australis (Cav.) 

Trin. ex Steud. 

 
Helophytes 

 
16103 (19.52%) 

 
318 (9.09%) 

Salix alba Phanerophytes (woody plants) 3180 (3.85%) 318 (9.09%) 

Salix cinerea Phanerophytes (woody plants) 9749 (11.82%) 318 (9.09%) 

Typha latifolia Helophytes 468 (0.57%) 318 (9.09%) 

 
Urtica dioica L. s. l., 

Hemicryptophytes 

(nitrophilous perennials) 

 
4806 (5.83%) 

 
318 (9.09%) 

 
As a result of the high variability in hydrogeomorphological conditions and water quality the kettle holes are 

very singular in their biodiversity composition making each one unique and covering a wide range of dominant 

vegetation types (Table 1 and Figure 3). For the purpose of this work we investigated nine local dominant plant 

species classes commonly present in kettle holes with the inclusion of dead plant biomass belonging to different 

plant life forms occurring at each kettle hole. The plant life-forms ranged from amphibian plants to woody plants 

(Phanerophytes; Appendix A4). The Helophytes tended to be the most numerous plant life form, as they often 

dominated the surface of the kettle holes, especially in the dry season as in our study period.  

The size of the selected kettle holes covered a range of 0.038 ha to about 1.2 ha. Concerning their water 

permanence, some kettle holes had been dry for an extended period of time and were considered episodic, while 

others were classified as permanent. However, due to prolonged droughts since 2018, all examined permanent 

kettle holes became semi-permanent, holding water most of the time but potentially drying up, especially at the 

end of the summer. 

UAV imagery was obtained using a DJI Phantom 4 RTK carrying a 20 Megapixel CMOS sensor with a fixed 

focal lens of 8.8 mm. The sensor captured RGB images. The camera was attached to a gimbal that helped 

compensating for system vibrations due to the rotor movement and for pitch and roll movements of the aircraft 



due to wind. The mission planning was done with the integrated software DJI GS RTK App of the P4 RTK. We 

used the 2D photogrammetry flight plan for ten kettle holes and the 3D photogrammetry multi-oriented flight 

plan for nine kettle holes at a flight altitude between about 25 to 35 m above ground leading to a mean ground 

sampling distance (GSD) of 9 mm, each image of the dataset has 5472 x 3648 pixels. The flight campaign was 

either at cloud-free times or with uniform cloud cover. The flights were realized at around 10:00 to 13:00 in broad 

daylight. 

 

2.2 |Manual labeling and Superpixels 

We labelled manually nine plant species classes, one class others and one class dead plants (Table 1). Including dead 

plants to the dataset was done to improve the quality of the classification and to enable potential health assessment 

of the ecosystem. The labeling of plant species classes was done by manually drawing polygons around 

homogeneous plant species areas with the VGG Image Annotator (Dutta and Zisserman (2019)). We randomly 

selected images from different kettle holes to create a detailed dataset for the segmentation.  

Because the UAV imagery of kettle holes was displaying an environmental scenery, it was a highly complex 

challenge to manually label every pixel of the image to a particular class.  Thus, instead we took only patches of 

the image of our objects of interest.  

Afterwards, we used the superpixel algorithm to divide pixels into perceptually meaningful regions by 

considering the pixel grid’s abstract structure. Eventually, we used only labelled superpixels as training images. 

Superpixels are an unsupervised classification approach that captures image redundancy to provide a simpler 

primitive for computing image attributes and to considerably simplify subsequent image processing tasks (Achanta 

et al. (2012)). The superpixel dataset, was created with the Simple Linear Iterative Clustering (SLIC) algorithm 

(Achanta et al. (2012) ). The SLIC generates clusters of pixels with similar attributes such as color, texture and 

shape. We used the software Pynovisão (Dos Santos Ferreira et al. (2017)) and considered 405 attributes (Table 

2). The attribute extraction can be understood as mathematical operations performed in the abstract binary data 

of the digital image to group regions with similarities. The chosen attributes for extraction were based on previous 

approaches (Costa et al. (2019)), and improved with the implementation of the K-curvature extraction algorithm 

(Abu Bakar et al. (2015)). The algorithm uses K-means to cluster similar pixels and thereby separate the image into 

small pieces, i.e., superpixels. We used a SLIC configuration with a K-value of 4000; K corresponds to the 

approximate number of segments that will separate the given image. The superpixel construction size depends 



  
 

on the K value and the image size. Other configurations were sigma 5 and compactness 10. Sigma smooths each 

image channel and compactness balances the proximity of pixel color and space with higher values favoring space 

proximity and therefore resulting in squarer superpixel shapes. The final size of each superpixel was in the range 

of about 50 to 100 pixels (Figure 4). The size varied depending on the color attributes as they influence the border 

delimitation. 

TA B L E 2 Attributes and corresponding number of extractors used in the SLIC approach 

Feature extracted Method Quantity of features Reference 

 

Color 

Red, green and blue (RGB) 12  
(Swain and Ballard (1991)) Hue saturation value (HSV) 12 

CIELAB color space 12 

 Gray-level co-occurrence matrix (GLCM) 36 (Soh and Tsatsoulis (1999)) 

Texture Gabor filter 160 (Feichtinger and Zimmermann (1998)) 

 Local binary patterns (LBP) 18 (Van Klaveren et al. (1999)) 

 

Shape and Grandient 

Hu Moments 7  
(Hu (1962)) 

Central Moments 10 

Histogram of oriented gradientes (HOG) 128 (Triggs et al. (1999)) 

K-curvature 10 (Abu Bakar et al. (2015)) 

 

In the final step of the training data generation, we used the previously annotated plant species classes to 

extract their annotation coordinates and their corresponding class label. The class assignment of a superpixel was 

then performed considering that information. Thus, the annotated class that dominated each cluster, i.e. 

superpixel, was chosen as the representing class considering a probabilistic threshold of 50%. For instance, if a 

superpixel region overlapped with two annotations such as: Typha latifolia and dead plants having 51% and 49% of 

overlap, respectively, the superpixel was classified as Typha latifolia. The attribute information of that superpixel 

was then stored to be later fed into the CNN training, making the machine understand these features as a 

representation of Typha latifolia. The SLIC approach was used across the entire annotated image dataset to 

separate segments of each class. 

Sampling the labelled images with the superpixel approach led to a very unbalanced dataset (Table 1) as most of 

the superpixels (63.57%) were spread into only 3 classes: Others (27.53%), Phragmites australis (19.52%) and Carex 

riparia (16.52%). This might lead to a bias in the DL algorithms. Therefore, we also created a balanced dataset by 

randomly selecting 318 superpixels from each class using the undersampling technique. Thereby, 318 referred to 

the smallest class in the unbalanced dataset; Cirsium arvense. Thus, a high number of labels of the plant classes 

were created but to ensure a balanced labeled dataset not every identified region was selected. Four samples 

from each of the eleven superpixels classes are shown in Figure 5, where each superpixel covers an approximated 

area of 9.2 by 9.2 cm².  



2.3 Deep Learning 
 
Three state-of-the-art (SOTA) CNNs have been used for the image segmentation. The chosen CNNs were 

NasNetMobile (Zoph et al. (2018)), EfficientNet (Tan and Le (2019)) and Xception (Chollet (2017)). They had been 

chosen due to their SOTA results in previous tasks and different learning strategies. 

A CNN architecture is made up of an input layer, which is in this study are the superpixel. Following the input 

we have the hidden layers, which are layers that process the data to logically extract information. There are many 

ways to configure the hidden layers and we can stack many of them to make the network ’deeper’. The number of 

hidden layers depends on the architecture of the network. The hidden layers are learning mathematical functions 

to obtain predictions from the input data and to create an output that is tangent to human’s way of understanding 

and making sense of data entries. The final output layer concludes the network; in our study it was a raster in which 

each pixel was assigned to a class. 

2.3.1 |NASNet Mobile 
 
NASNet is a novel class of algorithms that searches for an adequate network architecture for the problems at 

hand. It uses a reinforcement learning search method to optimize the architecture configurations (Zoph and Le 

(2016)). For this research, we used the mobile implementation NASNetMobile, which is less resource intensive 

than NASNet. It searches for the architecture’s building blocks on small datasets and then transfers them to larger 

datasets. The "NASNet search space" enables the transferability of knowledge from smaller datasets to bigger 

ones. 

The controller recurrent neural network (RNN) samples parallel or ’child’ networks, which are trained to 

converge to a target accuracy on a held-out validation set. These accuracies create a gradient and update the 

controller that will improve the architecture as processing goes forward. The structures of the cells are searched 

within a search space (Appendix A1). The controller RNN selects an operation from a set of operations, which were 

selected based on their prevalence in the DL literature (Zoph et al. (2018)), to apply to the hidden states. These 

operations are, e.g., max poolings of different sizes and depthwise-separable convolutions of different sizes. The 

model is supposed to find the best architecture of the CNN related to the dataset and the computation processing 

capabilities. 

2.3.2 |EfficientNet 

CNNs are usually developed at a determined resource quantity and manually scaled for better results if more 

resources are available (Tan and Le (2019)). EfficientNet uses a compound coefficient to automatically scale the 

network depth, width, and resolution dimensions to use all the available resources of the machine. Thus, 



  
 

differently sized CNNs will be generated depending on the data and hardware used. The main difficulty of scaling 

the model is that the optimal depth, width or resolution depend on each other, and the values change under 

different resource constraints. Following observations related to scaling up dimensions were made (Tan and Le 

(2019): Scaling up any dimension of network width, depth, or resolution improves accuracy. But the accuracy gain 

diminishes for bigger models. In order to pursue better accuracy and efficiency, it is critical to balance all dimensions 

of the network during CNN scaling. The network achieved very good results with Image-Net datasets (Deng et al. 

(2009) while claiming to be smaller and faster than previous CNNs. EfficientNet achieved SOTA accuracies on 

CIFAR (Calik and Demirci (2018) and four other transfer learning datasets (Appendix A2). 

2.3.3 |Xception 
 
Xception explores inception modules to leverage depth-wise separable and regular convolutions because it is 

assumed that cross-channel and spatial correlations are decoupled. Less computational power is needed because 

fewer operations are required to perform the convolutions. A depth-wise separable convolution, commonly called 

“separable convolution” in DL frameworks such as TensorFlow and Keras, can be understood as an Inception module 

with a maximally large number of towers (Chollet (2017)). The towers are defined by a pooling phase followed by 

convolutions (Chollet (2017)). More specifically, inception modules have been replaced by depth-wise separable 

convolutions i.e., a spatial convolution performed independently over each channel of an input, followed by a point-

wise convolution, i.e., a 1x1 convolution, projecting the channel’s output by the depth-wise convolution onto a new 

channel space (Chollet (2017)). The Xception architecture has 36 convolutional layers forming the feature 

extraction base of the network (Appendix A3). In short, the Xception architecture is a linear stack of depth-wise 

separable convolution layers with residual connections (Chollet (2017)). The Xception presented gains in 

performance on the ImageNet dataset (Deng et al. (2009)) if compared to other structures such as Inception V3 

(Szegedy et al. (2015)).  

2.4 |Hyperparameters and Optimizers 
 
The networks used in this study exhibit a different number of parameters (Table 3), which control the learning 

process. Parameters, in general, are weights that are learned during training. They come in the form of matrices that 

contribute to the model’s predictive power and are changed during the back-propagation process. This change is 

governed by the chosen algorithms, i.e., the optimization strategy. 



TA B L E 3 Number of trainable parameters of the 3 CNNs used 

Architectures Trainable parameters 

EfficientNet 43293709 

NasNetMobile 30994717 

Xception 72450857 

 

After having learned the convolutional cells, several hyperparameters, which are not learned, may be explored 

to build a final network for a given task (Table 4). In this study, the networks had been trained with 1000 and 100 

epochs considering the balanced and unbalanced datasets, respectively. The number of epochs is lower for the 

unbalanced case due to hardware limitations because the number of training instances is more than one 

magnitude higher than for the balanced case. The remaining parameter values are the same for both balanced and 

unbalanced datasets. A 10% patience was used for early stopping (patience, i.e., the training would stop if, after 

10% of the total number of epochs, no alteration in the validation loss was observed). Data augmentation has 

been implemented through random flips, random zooms (max=10%), random horizontal and vertical shifts 

(max=50%) and random rotations (max=90°). 

TA B L E 4 Hyperparameter set used in this study (same for all 3 CNNs) 

Hyperparameter Value 

Training Epochs 1000(B), 100(U) 

Early Stop Patience 10% 

Early Stop Monitor Loss 

Loss function Softmax 

Checkpoint Saving True 

Initial Learning Rate 0.01 

Validation Split 20% 

Neurons FC Layer 512 

Dropout FC Layer 50% 

Data augmentation Yes 

Cross-Validation data technique 5-Fold 

Transfer learning ImageNet 

Fine tuning True 

 

 

For the optimization of the CNN, three adaptive strategies had been tested. An optimizer is used to update 

the weights in the search of the smallest loss value. Thereby, the network is said to be learning information. The 

general idea of the optimization is to tweak the parameters iteratively, changing the learning rate to minimize the 

loss function. 



  
 

The optimizers chosen in this study were: Adagrad (Duchi et al. (2011)); Adadelta (Zeiler (2012)); Adam (Kingma 

and Ba (2014)). They are adaptive gradient descent-based algorithms. Adaptive learning rate optimizers have 

consistently shown better results than the standard, non-adaptive strategies when it is not possible to fine-tune 

a specific learning rate schedule (Bera and Shrivastava (2020)). We chose these optimizers because they perform 

well when the data is sparse, and they are capable of adapting well to the data. 

Adagrad is an algorithm for gradient-based optimization that adapts the learning rate to the parameters. For 

parameters associated with often occurring features, smaller updates (i.e., low learning rates) are used, while for 

parameters associated with uncommon features, more significant updates (i.e., high learning rates) are used. As a 

result, it is well-suited to handle sparse data and there is no need to tune the learning rate manually. One of the 

disadvantages of Adagrad is that, sometimes the learning rate tends to become infinitesimally small, resulting in the 

algorithm losing its capacity of learning; this happens because Adagrad accumulates all past gradients in the 

denominator. Adadelta, is a less aggressive extension of Adagrad. Instead of accumulating all past squared gradients, it 

restricts the window of accumulated past gradients to some fixed size variation. This way, Adadelta continues 

learning even when many updates have been done. Adam is an alternative way for calculating adaptive learning rates 

for each parameter. Aside from retaining an exponentially decreasing average of previous events, it also keeps an 

exponentially decaying average of the past gradients. 

2.5 |Metrics and experimental setup 

We calculated the confusion matrix to evaluate the classification performance, and from it, we derived the 

precision P (eq. 1), recall R (eq. 2), and F1-score (eq. 3). TP, TN, FP, and FN stand for true positives, true negatives, 

false positives, and false negatives, respectively. In our analysis, positives and negatives refer to the pixels correctly 

and falsely assigned to the corresponding class by the underlying classifier. Such positives and negatives are true 

or false, depending on whether or not they agree with the assigned ground-truth class.  

The Precision (P) is given by: 𝑃 =
்

்ାி
  (1) 

The Recall (R) is given by: 𝑅 =
்

்ାிே
  (2) 

The F1-score is given by: 𝐹1௦ = 2
ோ

ାோ
 (3) 

Three CNNs were trained using three optimizers. The balanced and unbalanced datasets were randomly 

divided into five-folds, separated into one test set, and using the remaining four folds for training. The resampling 

strategy, called 5-fold stratified cross-validation, is commonly used to evaluate machine learning algorithms (Wong 



and Yeh (2019); Wilson et al. (2020)). In the case of the unbalanced dataset, the random division considered the 

different number of samples of each class and hence preserving the class size ratio in each fold. Precision, recall, 

and F1-score metrics were used to measure the performance of each algorithm over the 5-folds test set. 

3 |RESULTS 

The result assessment of the processing used the superpixel images as a base. The best performance of 

classification for the unbalanced dataset is achieved by Xception using the Adagrad optimizer, which is indicated by 

the highest average precision (0.83), recall (0.75), and F1-score (0.77) (Table 5). However, EfficientNet has a lower 

interquartile range (IQR) also using the Adagrad optimizer (Figure 5). In the case of the balanced dataset, the 

Adagrad optimizer provides the best overall performance (precision, recall, and F1-score) for the EfficientNet and 

Xception architectures; the latter displays a higher median and smaller IQR. The F1-score for Xception is 0.85 and 

a good balance between precision (0.86) and recall (0.85) is achieved (Table 5). For the NASNetMobile, the adadelt 

optimizer reveals a higher median without outliers. However, the results for NASNetMobile are generally inferior 

to the other two CNNs (Figure 6). As expected, the results using a balanced dataset are superior to the unbalanced 

dataset, but the IQR for the EfficientNet using Adagrad is lower than for Xception in the unbalanced case. 

TA B L E 6 Average precision, recall and F1-score median values for all the three DL architectures and three optimizers using 
the unbalanced and balanced dataset 

 Dataset 

Unbalanced Balanced 

Architecture Optimizer Precis. Recall F1-score Optimizer Precis. Recall F1-score 

EfficientNet Adadelta 0.14 0.14 0.11 Adadelta 0.28 0.21 0.19 

EfficientNet Adagrad 0.74 0.68 0.69 Adagrad 0.80 0.78 0.78 

EfficientNet Adam 0.03 0.07 0.04 Adam 0.01 0.07 0.02 

NASNetMobile Adadelta 0.19 0.17 0.14 Adadelta 0.28 0.26 0.23 

NASNetMobile Adagrad 0.32 0.19 0.13 Adagrad 0.25 0.22 0.18 

NASNetMobile Adam 0.16 0.15 0.10 Adam 0.01 0.07 0.02 

Xception Adadelta 0.29 0.23 0.21 Adadelta 0.55 0.52 0.51 

Xception Adagrad 0.83 0.75 0.77 Adagrad 0.86 0.85 0.85 

Xception Adam 0.14 0.18 0.14 Adam 0.48 0.40 0.37 

In most scenarios for both, balanced and unbalanced, datasets unsatisfactory outcomes were achieved from 

the nine experiment configurations (with F-scores mostly below 0.3). However, two good outcomes were obtained 

with Xception and EfficientNet when employing the Adagrad optimizer. Adagrad is better suitable for sparse data, 

which is the case for some vegetation classes in this study. It outperforms the other two optimizers (Adadelta and 



  
 

Adam), which have a fixed learning rate momentum. In this study, combining a fixed-sized CNN (i.e., Xception) and 

an adaptive learning rate optimizer (i.e., Adagrad) produced the best F1-score results. 

The learning curve for the best configuration (Xception and Adagrad) is shown in Figure 7 and confirms that 

the choice of 1000 epochs for training was enough. It could have even been reduced because, after 40 epochs, 

the validation loss seems to decrease, indicating a possible start of overfitting. EfficientNet and Xception reveal a 

good performance identifying the plant classes, which is indicated by the high values of the diagonal of the 

confusion matrix (Figure 8). The success of the DL method varied depending on the class. The highest errors were 

given for the Carix riparia species that has been mistakenly classified as Other in 14% of the test set samples with 

both architectures; EfficientNet and Xception. EfficientNet presented a lower correct classification rate (64%) than 

Xception (70%) for this class. The brownish color, which also appears in some of the training samples from the 

class Others, may have confused both DL algorithms. NASNetMobile could not learn to classify most of the 

classes, shown by the producer’s accuracy value of the confusion matrix being only 0.78 for the dead plants class. 

Solely a small number of samples (i.e., 318 superpixels per class) was needed in this study to train the 

networks. Manual labeling is one of the costliest aspects of a supervised image classification workflow. Thus, the 

need for a small number of samples is an auspicious advancement for improved mapping of complex vegetation 

systems (Figure 9). 

4 |DISCUSSION 
 
Vegetation mapping is an important technical undertaking for managing natural resources. Traditional approaches 

(e.g., field surveys or collateral and supplementary data analysis) are time-consuming, data-lagging, and often 

prohibitively expensive. Remote sensing in combination with machine learning technologies can provide a 

potential practical and cost-effective way to study changes in vegetation cover. Results of this study utilizing 

machine learning methods to UAV images achieved F1-scores that are comparable to previous studies of plant 

segmentation (Torres et al. (2020); Elkind et al. (2019); Martins et al. (2021)). Some studies implemented additional 

information such as digital surface models (DSMs) or multi-spectral data to classify species to obtain similar or 

better F1-scores (Husson et al.(2016); Chabot et al.(2018); Durgan et al.(2020); Benjamin et al.(2021); Schulze-

Brüninghoff et al.(2021)) However, retrieving DSMs might be difficult in kettle holes, e.g., under windy conditions 

due to moving vegetation (Pätzig et al.(2020)) Moreover, the application of multi-spectral cameras makes the 

approach more expensive. Furthermore, these studies relied on extensive, hand-crafted feature selection (e.g., 

spectral and textural variables and band indices), which were then used with random forest or support vector 



machine classifiers, whereas CNN’s allow for end-to-end learning. Another study by (Bhatnagar et al.(2020)) , also 

using CNNs achieved F-score up to 90%, however classifying vegetation communities (grouped plant species). 

In order to begin vegetation preservation and restoration projects, it is important to first determine the 

existing status of vegetation cover, using UAV in combination with DL methods we have a highly efficient kettle 

hole mapping. Nonetheless, remote sensing of plant species detection is still complex. The potentially high 

changes of plant communities in a small area due to high abiotic gradients within kettle holes and meta-community 

processes within kettle holes and beyond demand punctual high resolution spatial data for a good discretization 

of the environment. Furthermore, in some classification cases an information richer dataset, such as multi-spectral 

or hyper-spectral datasets, still needs to be applied (Rossi et al. (2021)). Also, even trained specialists may produce 

mistakes caused by poor image quality, influences of shadow or a pixel being covered by several species (mixed 

pixels).  

When using the results of vegetation mapping from remote sensing imagery, further aspects need to be 

considered (Rapp et al. (2005)): how well does the chosen classification system represent actual vegetation 

community composition, how effective do remote sensing images capture distinguishing features of each mapping 

unit and how well can these mapping units be delineated by photo-interpreters. Thus, we must evaluate the 

applicability of each chosen machine learning method for each specific task. To better depict plant community 

compositions, a well-fit vegetation classification system should be carefully established according to the study’s 

purpose. There are no superior image classifiers that can be used in all applications equally. Applying or developing 

new classifiers fit for certain applications is a challenging task needing further research. 

Kettle holes in Germany have received legislative protection, but existing conservation methods are insufficient 

in terms of preserving potential habitat functions, which are dependent on the specific environmental conditions 

(Berger et al. (2011), Pätzig et al. (2012)). A significant achievement of this study is correctly classifying plant 

species with different plant forms at the same time with more than 85% F-1 score. This is a pioneering and forward-

looking methodological requirement for efficient characterization of many kettle holes and thus a better 

understanding of the dynamics, the functions and services of kettle hole ecosystems. In a next step, creating 

spatio-temporal land-cover change maps of these regions, allied with information about the current agricultural 

practices, can help to better understand how different agricultural strategies influence these ecosystems. This can 

support the provision of specific protection measures for each kettle hole and can also build the base for 

transferring experiences to other regions. 



  
 

The advance of this research is the implementation of an unsupervised machine learning algorithm SLIC that 

is capable of detect and segment features of color, shape and texture, and them feed this feature information into 

the Deep learning model, this process makes the training and production phase less complex and resource 

demanding because instead of working with all the pixels of the original images (5472 x 3648 pixels) we are 

working with a predetermined number of grouped pixels in the case of this work 4000 for each image. This also 

makes the labeling process easier by reducing the need of manual labeling every feature that we want to detect 

in the image, for that, we inputted some labelled features to the superpixel algorithm segmented them and created 

the feature patches dataset for the machine learning training, performed the training and then transferred the 

learning for the rest of the images.  

5 |CONCLUSION 
 
DL with CNNs is especially suited for information extraction from UAV imagery and it can become essential for 

the assessment of the challenging ecosystem of kettle holes. These ecosystems greatly benefit from high 

resolution monitoring of their diversity and change over time. We demonstrated that it is possible to train a 

suitable network for classifying different plant species and dead plants in kettle hole systems. Three different 

networks and three different optimizers were tested to automatically classify plant species which are typical in 

this landscape, and which were captured by UAV images. Best results (f1-score = 0.86) were achieved with the 

CNN Xception and the optimizer Adagrad. A balanced dataset was necessary for successful training. However, 

solely a small number of samples (i.e., 318 superpixels per class) was needed. A workflow was introduced to 

sample the training data efficiently from patchily annotated images.  

This study provides a method to reduce the current gap between the sciences of machine learning and remote 

sensing and ecology, including conservation. Machine learning is a viable tool to access the health of ecosystems 

and should be increasingly implemented in long-term monitoring schedules to facilitate evidence-based 

conservation programs. In the next step, the segmented images, whose exterior and interior camera geometry are 

known, will be projected to an orthomosaic to improve the quantification of plant species cover. Furthermore, 

the classification needs to be extended to different periods of the year to capture and quantify seasonal changes 

and better assess the dynamics of the kettle hole ecosystem. 
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F I G U R E 1 Example of a Kettle hole in the AgroScapeLab Quillow region. 
 
 
 
 
 
 

 
 

Data acquisition Manual image annotation Superpixel Clustering CNN training CNN segmentation 

 
F I G U R E 2 Illustration of the workflow proposed in the research. 



 

 
 

F I G U R E 3 Plant life forms of which some were classified in this study as described by (Raunkiaer et al. (1934). 

 

 
F I G U R E 4 Example of an image made of superpixels after applying the SLIC method with a K value of 4000. 
Each superpixel has an average approximated area of 83 cm² 



  
 

 
 
 

(a) 

 
(c) 

 
(e) 

 
(g) 

 
(i) 

 
 
 
 

F I G U R E 5 Superpixel examples (generated based on the features color, texture, shape and gradient) for eleven 
different classes: (a) Carex riparia, (b) Cirsium arvense, (c) Dead plants, (d)Oenanthe aquatica, (e) Others, (f) Phalaris 
arundinacea, (g) Phragmites australis, (h) Salix alba, (i) Salix cinerea, (j) Typha latifolia, (k) Urtica dioica. Each superpixel 
has a size of about 9.2 cm x 9.2 cm. 
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F I G U R E 6 Boxplots for precision, recall and F1-score for all tested configurations using the a) Balanced and b) 
Unbalanced dataset. 
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F I G U R E 7 Learning curves for the Xception architecture over the training and validation set using accuracy and 
loss. the y value represents the error and the x axis represents the number of epochs. 



  
 

 
 
 
 

 
 
 
 

F I G U R E 8 Confusion matrices for the combination of architecture and optimizer that presented the best 
F1-score results using the balanced dataset, as presented in Table 5. The values correspond to the percentage of a 
total of objects and were normalized by columns and summed up to one except for rounding effects. 



 
 
 
 
 

  
 

 

 

F I G U R E 9 Resulting map of identified species using the trained CNN with the best testing result, i.e. Xception 
optimized with Adagrad. The maps are presented using a SLIC image as a base. Therefore, we have this fragmented 
output. However, the trained network can also be applied to raw images. Please, note that the provided scale is an 
approximation as the images have not be georeferenced, yet. Furthermore, the results are not verified with true data 
and hence the actual vegetation map may differ. 

 



  
 

 

7 A | APPENDIX 

 
 
This section will provide artistic representations with short descriptions of the CNNs, and the plant classification used 
in this research. For more details of each architecture, we advise the reader to search for the papers. Often, the CNN 
architectures include several building blocks, such as con- volution, pooling, dense and fully connected layers. The CNNs 
used in this research are advances of CNN structures in regard of the search for better performance in terms of metrics 
and processing capabilities. 

 

 

 
 

A1 a) Optimal neural network architecture search with NASNet, proposed by (Zoph and Le (2016)) and used in 
(Zoph et al. (2018)). b) NasNet controller model architecture for recursively constructing one block of a 
convolutional cell. Each block requires the selection of five discrete parameters, each corresponding to the output of 
a softmax layer. An example for a block construction is shown in c). A convolutional cell contains B blocks. B may 
vary depending on the complexity of the experiment and the operator of the network. This figure is adapted from 
the research that proposes this network (Zoph et al. (2018)).) 

b) 

a) c) 



 
 
 
 
 
 

 
a) b) 

 
 
 
 
 

A2 a) EfficientNet-B0 architecture as proposed in (Tan and Le (2019)). b) The main building block of the 
EfficientNet is mobile inverted bottleneck MBConv (Tan and Le (2019)), that can change the size of the network 
channels to adapt to the task and to the available hardware resources. 

 
 
 
 
 

 

A3 Xception architecture as proposed in (Chollet (2017)). All convolution and separable convolution layers are 
followed by batch normalization (not included in the diagram). All separable convolution layers use a depth multiplier of 
1 (no depth expansion) (Chollet (2017).) 

 

 

 

 

 



  
 

A4 Description of the characteristics of the Kettle holes. KH_No = kettle hole number according to numbering within the 
SWBTrans project (ZALF). HGMT. = hydrogeomorphological type: BS-S = big and shallow storage type, BS-SO = big and 
shallow shore overflow type, SS-S = small and shallow storage type, SS-SO= small and shallow shore overflow type. KA = 
mean area of the kettle hole between 2016 and 2020, measured up to the tilled area of the adjacent field in square meter, google 
earth measurement. KA_C= size class of the mean area of the kettle hole in hectare: 1 = very small (≤0.03 ha), 2 = small (≤0.10 
ha), 3 = medium (≤0.32 ha), 4 = large (≤1.0 ha), 5 = very large (>1 ha). SS_C = class of shore slope in percent: 1 = flat (≤10%), 
2 = oblique (≤20%), 3 = very oblique (≤30%), 4 = steep (≤40%). LP = long-term pond permanence class for the period 2011-
2017. Perm = permanent; S.per = semi-permanent; Epis = Episodic; Peri = Periodic; LSOT = long-term shore overflow tendency 
class for the period 2011-2017. P.O = Partly overflowing; N.S.O = No Shore Overflow; F.O = Fully Overflowing. Note: due to a 
prolonged drought since 2018 the long-term pond permanence shifted for many kettle holes, e.g., all examined permanent kettle 
holes were not any longer permanent. 

KH_No HG
MT. 

KA KA_C SS_C LP LSOT 

1 SS-S 2271 3 4 Perm. N.S.O. 

2 BS-S 5800 3 3 Epis. N.S.O. 

3 SS-S 685 2 4 Peri. N.S.O. 

4 BS-
SO 

3224 4 2 S.per. F.O. 

5 BS-S 7771 4 3 Epis. N.S.O. 

7 SS-S 1878 3 3 Peri. N.S.O. 

8 BS-
SO 

12034 4 3 Perm. F.O. 

9 SS-S 2910 3 3 S.per. N.S.O. 

10 SS-
SO 

789 2 2 Epis. P.O. 

12 SS-S 842 2 4 Peri. N.S.O. 

13 SS-S 1017 2 4 Peri. N.S.O. 

14 SS-S 379 2 4 Epis. N.S.O. 

15 SS-S 1560 3 4 Epis. N.S.O. 

16 SS-
SO 

1014 2 3 S.per. F.O. 

17 SS-
SO 

1660 3 2 S.per. P.O. 

18 SS-S 3852 4 3 S.per. N.S.O. 

20 BS-
SO 

4644 4 2 Peri. P.O. 

23 SS-
SO 

2288 3 2 Perm. F.O. 

25 SS-S 4594 3 3 Peri. N.S.O. 
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Deep learning and vision transformers applied to
vegetation mapping for the region of Brazilian Pantanal
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Abstract
Pantanal is the largest continuous wetland in the world, but its biodiversity is
currently endangered by wildfires and the advance of the local agro-industry.
The information available for the area regarding location and the extent of defor-
estation practices today is generated with datasets that have spatial resolutions
ranging from 30 m up to 1 km, meaning that small forest clearing often is not
detected using those methods. For better monitoring, we want to propose a
method that will improve these assessments and create more accurate information
that will assist in environmental actions. Using PlanetScope imagery with 4.77m
spatial resolution and state-of-the-art, deep learning (DL) segmentation methods
in the form of convolutional neural networks (CNN) and Transformed-based
networks. These techniques are highly capable of extracting information from
remote sensing imagery. Here we combine these DL methods and high-resolution
planet imagery to segment forested areas in the Brazilian Pantanal wetland. We
compared the performances of multiple DL-based networks. For the transformer
method, we used Segformer and for CNN networks we used DeepLabV3+ and
OCRNet. considering RGB and near-infrared within a large dataset of 722 image
patches (4096 × 4096 pixels). We later verified the generalization capability of
the model by dividing the dataset into three equal-sized parts. As a result, the
transformer method SegFormer presented an average of each batch of the divided
result of F1-score 96.34% ±0.99 and IoU of 92.95% ±1.83 for the validation set
of the dataset and provided the best results between the analyzed networks.

For the update of the paper we also will provide a link for the finished paper in
the repository https://github.com/Jose-Augusto-C-M?tab=repositories,
since at the time of the thesis presentation this paper will not yet be published.

Keywords:

1. Introduction

A wetland consists of an ecosystem that depends on constant or recurrent
flooding or saturation, shallow or close to the surface of the substrate, that
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is, flooding. And due to this characteristic, over time, nature adapts, and an
ecosystem develops. Therefore, another characteristic must be the presence of
physical, chemical, and biological characteristics that reflect these episodes of
flooding or recurrent and sustained saturation. Another common diagnostic
characteristic of wetlands is hydric soils, and hydrophilic vegetation [1]. Until
recently, worldwide policies were intended to encourage or subsidize the conver-
sion of wetlands to drained or filled lands that could be used for agriculture,
urbanization, or other purposes not compatible with the existence of wetlands
[2]. Wetland conversion is a global phenomenon at a global scale [3]. It is
estimated that freshwater wetlands have lost nearly half of their area since 1900
[3]. The reasons for that are many; we can cite: water withdrawal, infrastructure
development (dams, dikes, levees, diversions), land conversion, over-harvesting,
land exploitation, the introduction of exotic species, pollution [4]. Between
the 1780s and 1980s, wetlands in the contiguous US decreased by 53%, with
losses in Ohio and California reaching 90% and 91%, respectively. [5] Over
80% of Canada’s wetlands, which are mostly in the southern quarter, have been
converted to agricultural or urban uses; the former being the primary reason for
85% of the country’s wetland losses [6]. So we can observe that the conversion
to agricultural and arable land primarily causes the wetland land conversion.
It is predicted that by 1985, 56–65% of the accessible wetland in Europe and
North America, 27% in Asia, 6% in South America, and 2% in Africa had been
drained [4]. And more recently, it has been estimated that at least 33% of the
world’s wetlands, including 2.64 million km2 of open water and 4.58 million km2
of non-water wetlands, had been destroyed as of 2009 [7]. These estimations
are based on meta-analysis [8, 9] of wetland data bibliography and case studies.
Significant discrepancies exist in information on wetlands, and estimates of the
global wetlands remaining area range from 1.53 to 14.86 million km2 [7].

Suppose we want to have an objective mapping in different scales of the
elements that are the components of the landscape of a big and rich environment
such as the wetlands. For that task, we may need to perform a semantic
segmentation computer vision task. It gives pixel-wise category predictions
rather than predictions for the whole image [10]. The semantic segmentation
task can be interpreted as a kind of thematic mapping and is largely used to
extract data as demanded from maps and any type of digital tensors. The chosen
wetland for this research is the Pantanal, one of the largest wetlands on the
planet.

The objective is to map the vegetation cover of the Pantanal. The justification
for that is quantifying tree canopy cover change for a dynamic system like
Pantanal. By doing this, we can identify the impact of events and estimate the
effects of these events on the conservation of the region. Deforestation is one of
the listed sustainable development goals (SGD), being the goal of number 15
[11]. And we can take the permission to say that the loss of forest cover and the
changes in the configuration of terrestrial life greatly impact almost all of the
objectives.

We want to target the problem of quantifying the trees with purely remote
sensing as data source and process it with deep learning (DL) techniques [12, 13].
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Remote sensing is the science and skill of gathering data about an object via
a device that is placed remotely from the source of information [14]. For this
case, the overall objective of computer vision procedures is to "automatically
categorize all pixels in an image into land cover classes or themes [14]". Two more
valuable statements: Spectral patterns, that is, pixels with comparable spectral
combination classes of reflectance and emissivity, are combined to represent
specific types of surface characteristics [14]. Spatial pattern recognition means
classifying image pixels according to how they are positioned with respect to
other pixels [14].

The introduction of DL in more recent years has sparked an interest in neural
networks. Since 2014, the remote-sensing community has focused on DL since
it has shown significant success in various image analysis tasks, such as object
recognition and land use and land cover (LULC) classification [15–18], data
fusion [19], segmentation [20], change detection [21] and registration [22]. The
object of quantifying an area of trees canopy cover of a dynamic system such as
Pantanal is made possible with remote sensing and deep learning tools in hand.
For this objective, we want to map the vegetation resources of the Brazilian
Pantanal wetland with deep learning methods that use Convolutional Neural
Network (CNN) architectures [23], and transformer-based architectures [13].

2. Materials and Methods

2.1. Study Area
The study area is located in Brazilian Pantanal. This region is one of the

largest wetlands on the planet. Pantanal is situated in the geographic heart
of South America and drains the Cerrado of central Brazil it covers 361,666
km2 estimated for the Upper Paraguay Basin [24]. Of that, 140,000 km2 is in
Brazilian territory, or 38.21% of the basin’s total area [25]. The study area map
is in Figure 1.

Pantanal is a vibrant and diverse ecosystem with immeasurable value in terms
of habitats and species of fauna and flora due to the wide variety of soil types
and flood regimes present in the biome. As an example of the wealth of natural
biodiversity present in the Pantanal, we have that it is the richest wetland in bird
species in the world, with 463 cataloged and with new studies carried out over
time with different sampling techniques and bigger numbers obtained. [24]. The
wetland consists of an ecosystem dependent on constant or recurrent flooding or
soil saturation, shallow or close to the surface of the substrate. Moreover, due to
this flooding characteristic, nature adapts over time, and a flooding-dependent
ecosystem develops. Therefore, another characteristic of wetland zones must be
the presence of physical, chemical, and biological structures that reflect these
episodes of flooding or recurrent and sustained saturation over time. Other
common diagnostic characteristics of wetlands are hydric soils and hydrophilic
vegetation [1]. On Figure 2, we can see some examples of scenic environments
that we can find on Pantanal.

Wildfires are currently the most significant concerning aspect of the Pantanal’s
conservation [27, 28]. Every year, the Pantanal experiences 7512 fire spots starters
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Figure 1: Map of the study area, in detach the Brazilian area of Pantanal wetland.

on average [29]. One of the worst years in recent memory, 2020, saw fires in
the Pantanal spread to 43 % of the area, killing around 17 million vertebrates
[27, 28, 30, 31]. Additionally, over the past twenty years, the Pantanal has
demonstrated a propensity to see an increase in burned regions [32]. Another
major concern for the conservation of this region is advance of the agro-industries.
Pantanal is a region increasingly threatened by large development programs; these
programs alter the region’s flood condition and severely change the type of land
use, increase deforestation and promote the spread of all kinds of environmental
contaminants [24, 33–36].

2.2. Dataset
In this study, Planet and NICFI Basemaps for Tropical Forest Monitoring -

Tropical Americas [37] satellite imagery was used. The dataset covers the whole
Brazilian Pantanal Biome with a spatial resolution of 4.77 meters and blue,
green, red, and near-infrared bands. NICFI mosaics are composed of monthly
and semester collections. For this study case images from July 2022 were used.

The dataset was downloaded using the portal https://code.earthengine.
google.com/, and its download functions using a python API https://geemap.
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Figure 2: These figures were created using data from the google earth engine visualization tool
[26], accessed via the link: https://code.earthengine.google.com/, the scale of the figures
is 1:100000.

org/ developed by [38]. For this, we created a script to download a batch of what
represents the images that are inside our study area for the period determined,
which was the first image of the dataset of 2022. The file format for the download
was .tiff and also can be .npy, but the training procedure was executed using the
.npy files because they are a simpler format than the format tiff.

To gather the reference data (i.e. vegetated areas), manual labeling was
performed by specialists with the assistance of the Geographical Information
System (GIS) open-source software QGIS 3.22. Within the Pantanal. After the
download of the dataset we created annotations for each image, called masks
or ground truth, which was inputted to the network in a .png format, and the
raw image patch was inputted as mentioned before in a .npy format for each
corresponding mask. It is important to note that some of the annotations are
provided blank.

2.3. Deep learning methods
To segment and map the vegetated areas, we used state-of-the-art semantic

segmentation networks. We compared recent ViT-based methods, such as Seg-
Former [10] with known CNN-based methods, like OCRNet [39] and DeepLabV3+
[40]. In general, segmentation methods take an image as input and return a
pixel-wise classification. In our case, the result of each method is an image
where the value of each pixel is categorized in a class lying between background
or a burned area. Traditional DL methods use convolution, pooling, and fully
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connected layers such as DeepLabV3+ and OCRNet. As stated, Transformers
have been used as a replacement for convolution layers to take advantage of
both global and local attention in the image. As traditional CNN methods are
commonly explored in remote sensing, we did not describe them in detail. Below,
we only describe the focused Transformer-based methods: SegFormer.

[41] developed a deep CNN model named DeepLabv3+. This model is an
improvement of the previous DeepLab versions. This versions uses and encoder
which takes advantages of several blocks designed to capture features from various
scales at once, such as atrous convolutions, depthwise separable convolutions,
Atrous Spatial Pyramid Pooling (ASPP) and a simple but effective decoder
capable of refining the segmentation result map especially in object boundaries.
A modified Xception version was used as the network backbone.

[39] proposed a Object Contextual Representation (OCR) scheme for semantic
segmentation. The method consists in to augment the representation of one pixel
given the context of the object representation in which that pixel is contained.
The method intuition is simple yet effective. First, a coarse representation
is obtained from a conventional DCNN. In sequence, the object regions are
estimated. Lastly, the object contextual representations are computed and
augmented.

SegFormer [10] is an efficient semantic segmentation method that combines
a Transformer encoder and multilayer perceptron decoder. The structure of
Segformer is encoder-decoder. Through hierarchically organized Transformers,
multi-scale features are obtained from the image in the encoder. Convolutional
layers, as opposed to the conventional Transformer, are used to implement the
position encoder on the encoder because they perform better at various image res-
olutions. The multi-scale features are combined in the decoder to represent both
local and global data. Finally, the input image is segmented using the combined
features. Despite having a straightforward decoder, SegFormer outperformed
other methods in conventional computer vision benchmark datasets.

2.4. Experimental Design
We split the areas into patches of size 256 × 256 pixels without overlap due

to the input dimension limitations of DL methods. A total of 722 patches were
obtained from the images. To train and evaluate the models, the dataset was
divided into training, validation, and testing sets with approximately 70%, 15%,
and 15%, respectively. The models were evaluated considering three repetitions
of the splits. In each iteration, the validation and test sets were chosen so there
were no repeated samples between the current and previous splits. To ensure
reliable results, the mean and standard deviation were estimated concerning
all evaluated metrics. The models were trained using the open-source semantic
segmentation toolbox MMSegmentation [42]. The state-of-the-art Deeplabv3+,
OCRNet and SegFormer architectures were applied. The Deeplab v3+ and
OCRNet models used ResNet 101 [43] model as the backbone. SegFormer is
not compatible with convolution-based backbones and uses its own transformer-
based backbone. Mit-b5 https://huggingface.co/nvidia/mit-b5 was used
as SegFormer backbone. All models were trained with 40k iterations using the
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AdamW optimizer algorithm with a learning rate of 6 × 10−5 and default weight
decay of 10−2. The learning rate scheduler makes the model head learning rate
ten times bigger than the backbone learning rate. The batch size was set to 8
for all models, except for SegFormer, which was set to 2 due to GPU memory
constraints.

The training and inference were performed inside a google co-laboratory
environment where we can access GPU on demand, also we have 32GB of RAM
memory available. The GPU used on the occasion of the project was a NVIDIA T4
https://www.nvidia.com/en-us/data-center/tesla-t4/. The codes used
in this research will be available in https://github.com/Jose-Augusto-C-M/
Pantanal_benchmark_Segmentation.git.

2.5. Evaluation metrics
The performance of the models is evaluated using the metric F1-score (F1)

(Equation 3), pixel accuracy (Equation 1), and the Intersection over Union
(IoU) (Equation 2), as they are currently used to assess semantic segmentation
experiments [44].

Accuracy = TP + TN

TP + TN + FP + FN
(1)

IoU = |GT ∩ Prediction|
|GT ∪ Prediction| (2)

F1 = 2 · Precision · Recall

Precision + Recall
(3)

The F1-score metric is calculated based on the weighted average of Precision
and Recall, where an F1-score reaches its best value at one and the worst score
at 0. The precision metric is defined as the number of True Positives (TP)
divided by the number of true positives (TP) plus the number of False Positives
(FP). The Recall metric is defined as the number of true positives (TP) over the
number of true positives (TP) plus the number of False Negatives (FN). The
IoU, also known as the Jaccard Index, is the ratio between the intersection and
the union between the ground truth (GT) and the prediction masks.

3. Results

3.1. Quantitative evaluation of Image Segmentation Methods
The results for the pixel accuracy, F1-score and IoU metrics are presented in

Tables 1 and 2. We report metrics separately for background (BG) and vegetated
area (Tree) pixels for a complete analysis of the results, as the occurrence of
vegetated area pixels tends to be lower than the overall background. As we
can see, SegFormer excelled for the metrics for the two classes, background and
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vegetated areas, for the validation sets and in some cases, it was outperformed
by the Deeplabv3+, but with also a big standard deviation for the Deeplabv3+.

Considering the IoU of the burned area, the Segformer obtained 92.14 against
90.75 for the DPT, the second-best method. This evidences the robustness
of Transformers against convolutional layers, as both methods are based on
this recent advance. Considering pixel accuracy, the best segmentations were
from SegFormer, FCN, and DPT with metrics above 96%. For the F-score, the
methods presented similar results for SegFormer, DPT, OCRNet, and FCN.

Table 1: Semantic segmentation results in test sets.

Accuracy F1-score IoU
BG Tree BG Tree BG Tree

Deeplab v3+ 95, 89 ± 1, 77 95, 29 ± 1, 54 96, 53 ± 1, 95 96, 09 ± 2, 19 92, 92 ± 4, 34 92, 54 ± 4, 02
OCRNet 95, 57 ± 0, 06 93, 23 ± 0, 96 94, 53 ± 0, 44 94, 29 ± 0, 61 89, 63 ± 0, 79 89, 20 ± 1, 08
SegFormer 96, 25 ± 1, 16 94, 71 ± 1, 88 95, 61 ± 0, 42 95, 44 ± 0, 74 91, 59 ± 0, 78 91, 28 ± 1, 35

Table 2: Semantic segmentation results in validation sets.

Accuracy F1-score IoU
BG Tree BG Tree BG Tree

Deeplab v3+ 95, 79 ± 0, 03 94, 54 ± 1, 39 95, 34 ± 0, 68 95 ± 0, 65 91, 11 ± 1, 24 90, 48 ± 1, 17
OCRNet 96, 11 ± 1, 15 94, 77 ± 1, 52 95, 64 ± 1, 36 95, 27 ± 1, 31 91, 67 ± 2, 48 90, 98 ± 2, 43

SegFormer 96, 71 ± 0, 71 96, 25 ± 1, 36 96, 61 ± 1, 01 96, 34 ± 0, 99 93, 45 ± 1, 90 92, 95 ± 1, 83

3.2. Qualitative evaluation of Image Segmentation Methods
The last experiment was carried out to determine the robustness and gener-

alizability of the model built in the earlier steps using the SegFormer network.
To segment the vegetated areas in Brazilian Pantanal forest zones, we used the
SegFormer, which was exclusively trained on Pantanal photos.

4. Discussion

Vegetation mapping is an important study area in remote sensing and earth
observation. It is vital in various fields, including conservation, land management,
agriculture, and climate change research. Vegetation mapping can provide
information about the distribution and type of vegetation in a given area, which
is used to make informed decisions about land use, conservation efforts, and
sustainable resource management. One important use of vegetation mapping
is in conservation and land management. Vegetation mapping can have the
finality of identifying and mapping areas of high biodiversity and tracking
changes in vegetation cover over time. This information is used to develop
conservation strategies and monitor the effectiveness of conservation efforts.
Another important use of vegetation mapping is in agriculture. By mapping the
distribution and type of vegetation in a given area, farmers can better understand

8



Figure 3: These figures represent examples of the result of the inference model of the Segformer
architecture for the whole Pantanal region.

the resources available to them and make informed decisions about crop selection,
irrigation, and fertilizer use. Vegetation mapping can identify areas suitable
for crop cultivation, which can help improve food security in regions where
arable land is limited. Climate change research is another area where vegetation
mapping is essential. Vegetation plays a critical role in the global carbon cycle,
and vegetation mapping can provide an understanding of how vegetation covers
changes and species may affect the global climate. Vegetation mapping can also
be used to monitor how different land uses, such as deforestation or reforestation,
may affect the global carbon cycle. Overall, vegetation mapping is a critical
tool for understanding and managing the earth’s resources, and it is vital for
conservation, land management, agriculture, and climate change research.
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Transformer networks are a type of neural network architecture that was
introduced in the paper "Attention Is All You Need" by Google researchers in
2017 [45]. The architecture is based on the idea of self-attention, where the
network can weigh the importance of different parts of the input when making a
prediction. This allows the network to effectively process sequential data, such
as natural language processing (NLP), where the order of the words is important.
The transformer network uses a multi-head self-attention mechanism to process
the input, which allows it to capture dependencies between different parts of the
input in a more sophisticated way than traditional recurrent neural networks
(RNNs) or convolutional neural networks (CNNs). Additionally, the transformer
network uses a feed-forward neural network as the core of the model, which
allows it to learn a more complex function. The transformer network architecture
is highly effective for various natural languages processing tasks, such as machine
translation and language understanding. It has become the de facto standard
for these tasks. The transformer-based models are also used in computer vision
and other domains. Many popular pre-trained transformer-based models such as
GPT-2, BERT, T5, RoBERTa, etc have been introduced by researchers and are
being used widely in the NLP-related tasks. Because of the success in NLP fields
transformers networks have been tested in various remote sensing applications,
including vegetation mapping. In this context, the goal is typically to use satellite
or aerial imagery to map the distribution and type of vegetation in a given area.

Segmenting vegetated areas in the largest wetland ecosystem on the planet
is an important procedure that environmental and governmental institutions
can use in decision-making tasks. As regarded previously, current information
for the affected areas mapped in this study is produced by an online platform
called Mapbiomas [46] https://mapbiomas.org/. The method presented in this
paper uses a finer spatial resolution dataset (4.77m) as presented in section 2.2
and new methods of deep learning that are presented in section 2.3. Creating a
more accurate vegetation map for the region. And with that, we demonstrated
that combining deep learning methods and remote sensing imagery, such as the
PlanetScope with RGB + NIR spectral bands is suitable to map these areas in
the Pantanal. As this method prove feasible to return high-detailed maps, it also
demonstrates the potential of using daily data provided by planet [37]. Increasing
the frequency of monitoring for deforestation being useful for environmental
planning in both controlling the current damages and restoring the destroyed
areas.

It should be noted that mapping vegetated areas in wetlands is also a difficult
task for humans mainly because of the amount of humid, water bodies and
other sources of noise inside the environment [47]. Making the labeling process
a complex task. When considering only RGB + NIR information, some of
these regions tend to confuse manual labeling processes because it is difficult
to distinguish between agricultural areas or open grass fields and tree canopy
cover. Regardless, the DL methods tested were quite capable of dealing with
the wetland’s natural characteristics. Quantitatively Tables 1 and 2. Returned
similar results, and visually the images presented in Figure 3 present a good
prediction of the forested areas inside Pantanal. The model could differentiate
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both natural water bodies and agricultural regions of bare soil, burned areas,
and humid soils.

Further studies should consider the combination of preliminary segmentation
methods and DL networks, evaluating the impact of, for example, weakly-
supervised methods and how well the methods are capable of improving the
original segmentation. Another important piece of information to be evaluated
is an analysis of multi-temporal imagery segmentation. Daily monitoring of
vegetation is important to detect and direct actions to stop it as soon as possible,
minimizing the damage. Lastly, domain adaptation techniques to deal with
multiple sensor data and few-shot and sparse labeling investigations may be
useful in novel approaches to improving the current method’s generalization.
These processes are considered state-of-the-art approaches [48–51] in computa-
tional vision tasks, and remote sensing imagery may greatly benefit from its
integration with current ViT or CNN-based methods to investigate forested
areas. Regardless, the current method proved satisfactory performance over
difficult analysis situations. It indicates that visible to near-infrared regions
and high-spatial detailed imagery is suitable for mapping forested areas in the
wetlands.

5. Conclusion

We investigated the capabilities of deep learning methods, in specific Transformer-
based networks, in mapping forested areas in the Brazilian Pantanal wetland.
The results demonstrated that the networks based on vision transformers re-
sulted in better accuracy, F1-score, and IoU than traditional CNNs architectures
such as Deeplabv3+, with a better and more regular result. We have used
a method of dividing the dataset into three random sets of images that had
the same number of images and together composed the entirety of the data.
For the validation sets of analysis, the architecture SegFormer returned an F1
score of 95.44% with a deviation of 0.74% and an IoU of 91.28 with a deviation
of 1.35% between the sets. The experimental results and the division of the
dataset indicate that DL models trained with a small fraction of the dataset can
be generalized to other areas inside Pantanal. Furthermore, we conclude that
Transformer-based networks are fit to deal with vegetated areas inside Pantanal
using high-spatial-resolution imagery. Future studies should bring on vision
transformer architectures to perform said task.
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CHAPTER 6

Discussions and Conclusions

6.1 Remote sensing, deep learning and vegetation mapping

By combining remote sensing and deep learning, vegetation mapping can be performed
at different scales with different sensors with high accuracy. Remote sensing data provides
a synoptic view of the Earth’s surface, while deep learning algorithms can extract complex
patterns and relationships within this data to produce detailed vegetation maps. These
maps can be used to monitor and understand vegetation distribution, composition, and
dynamics over time and to support a wide range of applications, such as land-use planning,
forest management, and monitoring of vegetation health (COLOMINA; MOLINA, 2014;
WHITE et al., 2016; SHEN, 2018). One example of remote sensing and deep learning
for vegetation mapping is the use of satellite imagery and deep neural networks to map
forests and other vegetation types as presented in Chapter 5. In this application, satellite
imagery is fed into different deep neural networks, which uses complex algorithms to
analyze the raw data and produce a vegetation map. The resulting map can be used
to monitor and understand the distribution, composition, and health of forests and
other kinds of vegetation, providing valuable information for land-use planning, forest
management, and conservation efforts. Remote sensing and deep learning have the potential
to revolutionize vegetation mapping, providing a cost-effective and efficient way to monitor
and understand the Earth’s vegetation. Combining these technologies makes it possible to
generate detailed and accurate vegetation maps at a large scale, which can support a wide
range of applications.
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In the papers presented in this research we developed techniques of quantifying veg-
etation inside different environments and scales of environments. In Chapters 3, 4 and
5. are presented a workflows that contains a supervised and semi-supervised methods
for the creation of datasets and computer models that perform image segmentation of
vegetation inside a diversity of environments, and be applied to a great diversity of uses.
Segmentation and the development of computer models related to vegetation inside cities
and forests have a wide range of applications as presented in (BARÓ et al., 2014), some of
then we can describe:

• Urban Forest Management: Computer models can be used to understand the distribu-
tion, composition, and dynamics of urban forests, providing valuable information for
urban forest management and planning. For example, by using satellite imagery and
machine learning algorithms, urban forest canopies can be segmented and analyzed
to understand their contribution to the urban environment.

• Urban Green Space Planning: Segmentation and computer models can be used to
understand the distribution and distribution of urban green spaces, such as parks and
gardens, and how these spaces contribute to the urban environment. This information
can be used to inform green space planning, design, and management, ensuring that
urban green spaces are optimized for their desired functions and benefits.

• Biodiversity Assessment: Computer models can be used to understand the composi-
tion and structure of vegetation in forests and other natural areas, providing valuable
information for biodiversity assessment and conservation planning. For example, by
using remote sensing data and machine learning algorithms, species distribution and
abundance can be estimated, allowing for biodiversity assessment in a given area.

• Forest Health Monitoring: Computer models can be used to monitor the health
and productivity of forests, providing valuable information for forest management
and conservation. For example, by using remote sensing data and machine learning
algorithms, changes in vegetation structure and productivity can be detected, allowing
for early detection of threats such as disease, pest infestations, and deforestation.

6.2 Thesis contributions

This chapter will explain the scientific and technical implications for the academic
community and society of the research findings. The doctoral dissertation included a
thorough investigation of remote sensing and deep learning data processing and demon-
strated applications in the fields of urban vegetation mapping and wetland vegetation
mapping, which have possibilities for improvement and proposals of novel techniques such
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as the ones presented in this doctoral dissertation. This is because computer vision and
digital image processing techniques are indispensable in contexts where it is necessary
to obtain information quickly, updated, and automatically on digital images. Although
remote sensing images are easily available and in large quantities, their use presents a real
difficulty in processing by having a large amount of undesirable noise and imperfections
that impair the analysis for feature extraction. Automated vegetation detection or any
other information from remote sensing imagery remains challenging.

At the start of the doctoral dissertation research, we were faced with a demand for smart
cities-related applications of segmenting trees inside an urban area with high-resolution
images (10cm GSD). This demand resulted in the article of chapter 3, in which we developed
a method that can be described as a supervised learning method. We picked random aerial
orthoimages, annotated them, and then trained five state-of-the-art Convolutional Neural
Networks to identify trees inside the urban area. We created a method for urban managers
to measure and quantify the urban landscape vegetation.

In chapter 4, we have a workflow containing a semi-supervised method for creating the
dataset to perform the training. The use of labeled data for the training of algorithms
is the most usual way; however, it is considered a laborious task. The computer vision
community, over the years, developed ways of diminishing and mitigating this task or even,
in some cases excluding it. We created a more diverse and rich dataset for deep learning
algorithms. Furthermore, since we were working with many different plant species, this
increase of information for training was fundamental to accurately segmenting the plant
species area. We generated results to support the measurement and quantification of the
plant health of a region.

In chapter 5, we have a workflow containing supervised method. We used planet
satellite data provided via a project Planet and NICFI Basemaps for Tropical Forest
Monitoring (PLANET, 2017). The satellite imagery was collected by Planet’s Dove and
SkySat satellites, which are able to capture images of the earth’s surface with a high level
of resolution and accuracy. The article uses Planet and NICFI images and combination
of deep learning architectures in the form of convolutional neural networks (CNN) and
transformer based neural network to create detailed distribution vegetation maps of the
Brazilian Pantanal. These maps can be used to support a wide range of activities related to
tropical forest monitoring, such as carbon stock assessments, monitoring of deforestation
and degradation, and land use planning. The authors would also like to highlight the
importance of these detailed maps in the context of REDD+ (Reducing Emissions from
Deforestation and Forest Degradation) programs, which aim to create financial value
for the carbon stored in forests, offering incentives for developing countries to reduce
emissions from forested lands and invest in low-carbon paths. Overall, the article presents
a promising approach for wetland forest monitoring using high-resolution satellite imagery
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and deep learning. It highlights the potential for cost-effective and accurate monitoring of
wetlands and the importance of this kind of data for management and conservation.

This document presents three papers with very different manners of obtaining and
processing the data, to get to the finality of teaching a mechanical machine to identify
a pattern. This research contribution has provided new and innovative approaches to
vegetation mapping, allowing for a more comprehensive understanding of the distribution,
composition, and dynamics of vegetation over time. The results of this research can be
used to inform a wide range of decision-making processes, from urban green space planning
to conservation efforts. By providing a cost-effective and efficient way to monitor and
understand vegetation.

6.3 Future directions

The use of remote sensing and deep learning for vegetation mapping is a rapidly
evolving field with many exciting opportunities for future research. Some potential future
directions for this field may include:

• Integration of Technologies: Integrating remote sensing and deep learning with other
technologies, will continue to provide new and innovative ways to monitor and
understand vegetation. And with the increased spatial and temporal Resolutions
will make possible the development of new and improved remote sensing platforms.
Providing a more comprehensive understanding of vegetation dynamics over time and
support various applications, such as monitoring vegetation health and productivity.
Generating information to support a wide range of decision-making processes.

• For vegetation monitoring we also have the necessity of increasing automation
and scalability. The development of automated and scalable methods for vegetation
mapping with remote sensing and deep learning will enable the mapping of vegetation
at a larger scales with increased efficiency. This will provide valuable information for
a wide range of applications, such as land-use planning and deforestation monitoring.

6.4 Conclusion

In conclusion, using remote sensing and deep learning for vegetation mapping is a rapidly
evolving field with many exciting opportunities for future research. By developing and
improving these methods, it is possible to generate more detailed and accurate vegetation
maps and support a wide range of decision-making processes related to environmental
monitoring and management.
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My doctorate formation has greatly improved my skills as a scientific researcher and
writer. During my doctorate, I had the opportunity to participate in many research articles
presented in the Annex section. For my formation as a doctor, the participation of my
Laboratory structure, partnerships, and colleagues was fundamental. During this period, I
had a taste of what is the possibility of making science and being able to contribute to a
better future for the planet.
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